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Abstract

I assess the efficiency of transport networks for every country in Africa. Using spatial data from
various sources, I simulate trade flows over more than 70,000 links covering the entire continent. I
maximise over the space of networks and find the optimal road system for every African state. My
simulations predict that Africa would gain 1% of total welfare from better organising its national
road systems. I then construct a novel dataset of local network inefficiency and find that colonial
infrastructure projects significantly skew trade networks towards a sub-optimal equilibrium. I also
find evidence for regional favouritism and inefficient aid provision.
JEL-codes: R42, R12, O18, O11

1 Introduction

Trade costs in Africa are the highest in the world, severely inhibiting interregional trade (Limao and
Venables, 2001; The Economist, 2015; Nugent and Lamarque, 2022). Sub-Saharan Africa’s coverage
with paved roads is by far the lowest of any world region, with only 31 total paved road kilome-
tres per 100 square kilometres of land, compared to 134 in other low-income countries (Foster and
Briceño-Garmendia, 2010). The World Bank has identified an annual infrastructure gap amounting
to 93 billion US dollars and urges countries in Sub-Saharan Africa to spend almost one per cent of
GDP on building new roads (Foster and Briceño-Garmendia, 2010; Nugent and Lamarque, 2022).
This reasoning is also reflected in the composition of development aid – in 2017, by far the largest
share of World Bank lending to African countries was allocated to transport infrastructure projects
(The World Bank, 2017). There appears to be a clear consensus that Africa needs more roads.

I investigate a neglected, yet powerful second source of spatial inefficiency in Africa’s transport
system. I don’t ask if the continent has too few roads, but rather analyse whether the current in-
frastructure is in the wrong place. Do Africa’s roads connect the right areas to promote trade? How
would a social planner design a perfect transport network which optimises welfare in a given coun-
try? Which African country is closest to its hypothetical optimum? And why are some locations
systematically cut off from the national trade system?

In this paper, I derive the unique optimal trade network for every country in Africa. Using data
from satellites and online routing services, I first construct an interconnected economic topography
of more than 10,000 square grid cells covering the entire continent. I then employ a simple network
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trade model to simulate trade flows through more than 70,000 links spanning all of Africa. In a
second step, I use a variant of a recently established framework by Fajgelbaum and Schaal (2020)
to optimise over the space of networks and find the optimally redesigned transport system given
the underlying economic fundamentals for every African country. An intuitive thought experiment
demonstrates this process: suppose the social planner were to observe the spatial distribution of
roads, people, and economic activity in a given country before being allowed to lift all roads from
their current location, freely shuffle them around, and then reorganise them in the most efficient way
for mutual trade. The planner is not allowed to build completely new roads, but is only allowed to
move infrastructure from one part of the country to another. In this exercise, she takes into account
local incentives for trade between all sets of neighbours on a complex network graph, regional dif-
ferences in trade costs caused by geographical and network characteristics, and heterogeneous costs
to constructing new roads depending on the underlying terrain.

I then compare these optimal networks to the current system. I argue that the degree to which the
optimum differs from the status quo can be interpreted as an intuitive measure for the inefficiency of
a country’s current road network. I show that potential welfare gains from reshuffling roads would
improve overall welfare on the continent by about 1%. I also identify South Sudan as the country
with the most inefficient transport network in Africa.

On the regional level, this scenario creates winners and losers. The model identifies some areas
as having too many roads and decides to put them to better use somewhere else. These areas were
inefficiently overendowed with transportation infrastructure before the reshuffling exercise. Other
regions, however, did not have enough infrastructure given their relative position in the network
and are now awarded additional roads by the social planner. I identify these areas as discriminated
against by the current transportation network design. By comparing welfare levels before and after
the hypothetical intervention, I create a novel dataset of local infrastructure discrimination for more
than 10,000 cells covering the entire African continent.

Why are some regions systematically cut off from the benefits of efficient trade? I use a variety
of empirical designs to analyse the substantial spatial variation present in my dataset. Firstly, I
investigate the long-run effects of large infrastructure investments from the colonial area. Similarly
to Jedwab and Moradi (2016), I find a persistent impact of railway lines constructed by the colonial
powers over a century ago. Plausibly exogeneous variation in the number of kilometres crossing
a given area significantly skews the current trade network towards a suboptimal state today. Even
though many of the railway lines have fallen into disarray since independence, regions close to
colonial railroads still have too much road infrastructure given their relative position in the network.
In contrast, railway lines that were planned, but by historical accident never built, do not predict any
significant departure from the optimal spatial distribution.

Secondly, I analyse how spatial inefficiencies in Africa’s trade system are related to ethnic power
dynamics. I find no conclusive evidence that ethnic regions that are politically discriminated against
have more or less than optimal infrastructure stocks. However, I do find evidence for regional
favouritism – home regions of national leaders have significantly more infrastructure than is nation-
ally efficient. Finally, I investigate the extent to which foreign aid projects have succeeded in allevi-
ating the imbalances in Africa’s transport networks. I present descriptive evidence demonstrating
that World Bank funds have not gone towards the regions most in need of additional infrastructure.
Instead, areas that are identified as having too many roads are associated with more Bank lending.
The same patterns hold for development aid from China.

My study contributes to several strands of literature. In analysing the impact of transport revo-
lutions, I add to the large body of work devoted to identifying the economic returns to improving
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infrastructure systems. A series of rigorous studies have gauged the welfare effects of the expansion
of the US railway network in the 19th century (Donaldson and Hornbeck, 2016; Swisher, 2017), colo-
nial railway and rural road systems in India (Donaldson, 2018; Burgess and Donaldson, 2012; Asher
and Novosad, 2020), or highway systems in China (Faber, 2014; Baum-Snow et al., 2017). In contrast
to these studies, I do not analyse the impact of existing transport revolutions, but rather measure
how much a hypothetical first-best transport system would improve welfare. Methodologically, I
harness recent advances bringing insights from the optimal transport literature into the economics
discourse. Most directly, I apply the framework by Fajgelbaum and Schaal (2020) to construct the
optimal trade network for every African country. They are the first to optimise over the space of
networks in order to find the globally efficient transport system in an economics context, though the
problem has long featured prominently in the mathematics literature (for a textbook treatment, see
Bernot et al., 2009; Galichon, 2016). Previous studies in economics relied on stepwise heuristics to
eliminate suboptimal counterfactual networks like Alder (2022) in India or Burgess et al. (2015) in
Kenya, but did not include a derivation of the globally optimal network design. Once constructed,
my network features trade on a two-dimensional lattice geometry and is hence related to the theoret-
ical work of Allen and Arkolakis (2014, 2022). I also contribute to the literature employing regional
trade models to explain subnational welfare disparities caused by internal transport geography in
a development context (Atkin and Donaldson, 2015; Storeygard, 2016; Coşar and Fajgelbaum, 2016;
Fiorini et al., 2021; Gorton and Ianchovichina, 2022). In constructing the efficient network to mitigate
these dispersions over space, I also contribute to new explorations into conditions and characteris-
tics of optimal spatial policies (Fajgelbaum and Gaubert, 2020). In my three strands of empirical
inquiry, I first add to the literature examining long-run persistence of colonial transportation revo-
lutions in Africa (Jedwab and Moradi, 2016; Jedwab et al., 2017). I also contribute to the literature
examining how ethnic relations relate to comparative development in Africa (Michalopoulos and
Papaioannou, 2013, 2014, 2016) and add to our understanding of how ethnic (De Luca et al., 2018)
and regional favouritism (Hodler and Raschky, 2014; Burgess et al., 2015) skew public goods spend-
ing towards an inefficient allocation. Lastly, I contribute to the literature on the distribution and
effects of foreign aid (Clemens et al., 2012; Nunn and Qian, 2014; Dreher et al., 2019; Dreher and
Langlotz, 2020).

2 A model of optimal transport networks

In this paper, I derive the unique optimal goods trade network for every country in Africa. To
be able to maximise over the space of networks, I harnesses an altered version of a framework by
Fajgelbaum and Schaal (2020). The model is introduced in the following paragraphs.

2.1 Geography

Following the set-up and notation of Fajgelbaum and Schaal (2020), I consider a set of locations
I = {1, ..., I}. Each location i ∈ I inhabits a number of homogeneous consumers Li. This number is
treated as given and fixed for every location, such that consumers are not allowed to move between
locations. Each consumer has an identical set of preferences characterised by

u = cα
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where c denotes per capita consumption. Every consumer in location i consumes ci and Ci = Lici

denotes total consumption in location i.
There is a set of goods N denoted by n = {1, ..., N}. Total consumption in each location is defined

as the CES aggregation of these goods

Ci =

( N

∑
n=1

(Cn
i )

σ−1
σ

) σ
σ−1

where σ denotes the standard elasticity of substitution and Cn
i denotes the consumption of good n

in location i. Locations specialise in the production of goods such that each location only supplies
one variety n ∈ N . Let Yi = Yn

i denote total production in location i.

2.2 Network topography

Locations I represent nodes of an undirected network graph. Each location i is directly connected to
a set of neighbours N(i) ∈ I \ {i}. I consider locations to be arranged on a two-dimensional square
lattice where each node is connected to its eight surrounding nodes to the north, north-east, east,
and so on.

All goods can be traded within the network. Let Qn
i,k denote the total flow of good n travelling

between nodes i and k ∈ N(i). While goods can only be traded between neighbouring nodes, noth-
ing prevents them from travelling long distances through the network by passing multiple locations
after each other. Sending goods from location i to location k ∈ N(i) incurs trade costs, which are
modelled in the canonical iceberg form. I follow Fajgelbaum and Schaal and model iceberg trade
costs for trading good n between neighbouring locations i and k as

τn
i,k(Q

n
i,k, Ii,k) = δτ

i,k
(Qn

i,k)
β

Iγ
i,k

(1)

where Ii,k is defined as the level of infrastructure on the edge between nodes i and k. More infrastruc-
ture on a given link decreases the cost of trading between them. δτ

i,k is a scaling parameter, which
allows trade costs to be flexibly adjusted for any given origin-destination pair. Trade costs also de-
pend on Qn

i,k, the total flow of goods on the link. Higher existing trade volumes on a given edge
make sending an additional good more costly, a dynamic Fajgelbaum and Schaal refer to as conges-
tion externality. The social planner realises this and takes congestion into account when determining
optimal trade flows.

In equilibrium, each location cannot consume and export more than it produced and imported.
More formally

Cn
i + ∑

k∈N(i)
Qn

i,k(1 + τn
i,k(Q

n
i,k, Ii,k)) ≤ Yn

i + ∑
j∈N(i)

Qn
j,i (2)

must hold for every n and i.
I follow the contribution of the Fajgelbaum and Schaal (2020) framework and proceed to endoge-

nize infrastructure provision Ii,k in order to facilitate optimal trade flows. Analytically, this problem
nests the static trade flow exercise outlined above. The social planner chooses an infrastructure net-
work, and given the network proceeds to compute the optimal trade flows subject to (2). To make
the problem more interesting, I introduce a constraint on infrastructure. This is specified in fairly
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straightforward manner as the Network Building Constraint

∑
i

∑
k∈N(i)

δI
i,k Ii,k ≤ K (3)

where δi
i,k denotes the cost of building infrastructure on the edge between nodes i and k. Total

spending on infrastructure is constrained by K, the sum originally spent on building the existing
road network of a country. I observe the current road network of the economy, infer how much it
must have cost to build it, and set K equal to this amount. The social planner’s task of choosing an
optimal network hence amounts to a reallocation exercise. She gathers all road building material
available in the economy and gets to redistribute it in a way that is welfare optimising according to
the model. Improving infrastructure between two nodes in order to foster local trade hence comes at
the cost of having to take away infrastructure elsewhere. I argue that the extent to which the social
planner has to rearrange existing edges serves as a sensible measure of spatial inefficiency in the
existing network.1

2.3 Planner’s problem and equilibrium

In the nested problem, the social planner observes localities, endowments, population, and prefer-
ences and solves for trade flows between nodes that maximise overall welfare. She also solves for
the optimal transport network which induces welfare-maximising trade flows in the nested problem
while respecting the Network Building Constraint (3). The full planner’s problem can hence be stated
as

max{{
Cn

i ,{Qn
i,k}k∈N(i)

}
n

,

ci ,{Ii,k}k∈N(i)

}
i

∑
i

Liu(ci)

subject to Lici ≤
( N

∑
n=1

(Cn
i )

σ−1
σ

) σ
σ−1

, ∀i ∈ I CES CONSUMPTION

Cn
i + ∑

k∈N(i)
Qn

i,k(1 + τn
i,k(Q

n
i,k, Ii,k))

≤ Yn
i + ∑

j∈N(i)
Qn

j,i, ∀i ∈ I , n ∈ N BALANCED
FLOWS CONSTRAINT

∑
i

∑
k∈N(i)

δI
i,k Ii,k ≤ K NETWORK BUILDING

CONSTRAINT

Ii,k = Ik,i, ∀i ∈ I , k ∈ N(i) INFRASTRUCTURE
SYMMETRY

Cn
i , ci, Qn

i,k, Ii,k ≥ 0, ∀i ∈ I , n ∈ N , k ∈ N(i). NON-NEGATIVITY2

My version of the planner’s problem follows the baseline Fajgelbaum and Schaal (2020) model.
However, my model has four important differences. First, in my model all goods are tradeable
and no local amenities exist. Second, I do not allow workers to migrate between places and hence
differences in marginal utility might still exist between nodes. Third, my model remains agnostic
about the production function of each location and no analysis of the optimal use of input factors is

1I also impose infrastructure symmetry and restrict Ii,k = Ik,i ∀ i, k ∈ N(i).
2As will be discussed in chapter 3, I calibrate my version of the model with an even stronger lower bound to infrastructure

Ii,k than mere non-negativity. For reasons discussed below, I simulate the model while binding Ii,k ≥ 4. For all other variables,
merely non-negativity is required.
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undertaken. Fourth, I impose infrastructure symmetry. All these changes are undertaken with the
later calibration and reshuffling exercise in mind.

While optimising over the space of networks might appear daunting, Fajgelbaum and Schaal
(2020) provide conditions under which deriving the unique spatial optimum is both ensured and
feasible. Instead of solving for every single infrastructure link, I follow the authors and recast the
problem in its dual representation as a set of first-order conditions from the subproblems, which only
depend on Lagrange multipliers of each constraint. There are considerably fewer multipliers than
primal control variables, namely one for every good in every node (interpretable as local prices). I
am hence left to only find a price field from which under the convexity assumptions, all other prop-
erties follow.3 As spelled out more formally in the technical appendix (see section A), I obtain the
optimal network by constructing the Lagrangian corresponding to the planner’s problem, deriving
its first-order conditions, and recasting them as functions of the Lagrange parameters. Numerical
optimisation now yields the solution to the dual problem and inserting the parameters back into
the derived first-order conditions, I can immediately derive the optimal infrastructure network Ii,k,
optimal trade flows Qn

i,k over this network, and ensuing consumption patterns Cn
i in each location.

3 Calibration of current and optimal trade network designs

To calibrate a topography of economic activity and trade in all African countries, I construct a novel
network representation covering the entire continent and enrich its nodes and edges with data from
a variety of sources.

3.1 Network nodes

I first divide the entire continent into grid cells of 0.5 degrees latitude by 0.5 degrees longitude
(roughly 55 by 55 kilometres at the equator). For all of Africa, this amounts to 10,167 cells. I then
aggregate spatial data on economic and geographic characteristics onto this grid cell level. I calibrate
Li with data on 2015 population totals from the Gridded Population of the World dataset (2016).4 On
average, a cell is home to 110,000 people (median 25,000). The most populous cell contains Cairo
and inhabits almost 18 million people. 212 cells are uninhabited. To proxy for heterogeneities in
economic activity over space, I rely on the established practise of using satellite imagery of light
intensity at night (Henderson et al., 2012). Data on 2010 night luminosity come from Henderson
et al. (2018) and are also aggregated onto my study’s 0.5 × 0.5 degree grid resolution to form Yi.

3.2 Network edges

To quantify the degree to which network nodes are connected to each other, I make use of the open
source routing service OPEN STREET MAP (OSM). The OSM routing algorithm is specified for cars
and takes into account differential speeds attainable on different types of roads. For every centroid
location, I scan OSM for the optimal route to each of their respective eight surrounding neighbours
(or less for coastal grid cells). For all of the resulting almost 75,000 routes, I gather distance travelled,

3It is still a quite demanding task to solve the ensuing dual problem, even numerically. Invoking duality reduces the scale
of the problem, but I am still left with optimising over I × N variables.

4This NASA-funded project gathers data from hundreds of local census bureaus and statistical agencies in order to con-
struct a consistent high-resolution spatial dataset of the world’s population. When a datasource only reports population totals
for large, higher-level administrative districts, the dataset smoothes population uniformly over the entire area. GPW does
not employ any auxiliary data sources – like satellite data – to weight-adjust population totals over space (Doxsey-Whitfield
et al., 2015). Africa is the continent with the coarsest resolution of administrative input data. However, the average coverage
of (57KM)2 neatly matches the grid cell resolution of my study.
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average speed, and step-by-step coordinates of the travel path.56 For some particularly remote areas,
the nearest street is very far away, such that the car routing provided by OSM is not sensible. To
counter these cases, I also calculate for all 70,000+ connections the outside option of walking the
entire link in a straight line at 4 km/h. I then identify cases in which walking directly is actually
faster than using OSM’s proposed route (plus the travel to and from roads). In these cases, I replace
OSM’s route with the walking distance and constant 4 km/h speed.

My study is concerned with the optimal domestic road network for each country in Africa. I
hence divide the entire grid along national borders. Reoptimising roads solely within a country’s
borders comes at the risk of undervaluing roads built primarily for international trade. A highway
connecting to an important trading post or port just beyond a country’s borders might look ineffi-
cient to a social planner who is only given national data. I hence create a buffer of 120km around
each country and allow the social planner to take these border regions into account when computing
the optimal network.

Figure 1 presents the resulting road networks for four countries. I plot all connections within
each country and their border buffer (in grey). Figure 1a displays every OSM connection for Burkina
Faso, which appears overall fairly well connected. Connections in which walking were the preferred
alternative are displayed in thin straight lines and fairly rare. Figure 1b presents the case of Mali,
which paints a different picture: for many connections through the Sahara in the north of the country,
walking straight lines is actually the fastest way to get from A to B. The DRC in Figure 1c displays a
clear lack of infrastructure in the middle of the country. Small Rwanda in Figure 1d zooms in on the
actual roads taken and displays the intricacies of the optimal routing provided by OSM.

Relying on the open source community of OSM does come with some drawbacks. The most
pressing concern is that data on the position and quality of roads are user-generated and hence sub-
ject to reporting bias. Richer areas may appear to be equipped with more roads if local residents
have the time and necessary access to a computer to enter their neighbourhoods into the database.
While this is certainly troubling, I believe this bias to be much more important on finer resolutions
than the operating one in this study. Start and destination of the elicited routes are on average more
than 55 kilometres apart and travel will hence take place mostly on larger roads and national high-
ways. It is unlikely that these major streets are systematically underreported in OSM, the primary
open source routing platform on the internet.7

I use the average attainable speed between locations according to the OSM algorithm as a proxy
for the quality of current infrastructure on the edge between them. If two locations are linked by a
faster connection, I assume this to be the result of higher infrastructure Ii,k on this edge. I hence set

Ii,k = Average Speedi,k (5)

This measure is naturally bound from below at 4 km/h, as walking the air-line distance is always

5Scans of OSM were conducted in July 2019. The service does not allow a retrospective scan over past road databases, so
a time difference between lights (2010), population (2015), and roads (2019) can not be overcome.

6If either start or destination location do not directly fall onto a street, the optimal route jumps to the nearest road and goes
from there. To take this into account, I add a walking distance to the travel path. Agents are assumed to walk in straight lines
to the nearest street at a fixed speed of 4 km/h. They then take the car and drive the route with average speed as specified by
OSM, before they potentially have to walk the last stretch again to their exact centroid destination.

7In some rare cases (less than 0.1 per cent of all connections), the OSM algorithm cannot find any route between two
neighbouring centroid locations. This is mostly due to an obvious geographic impossibility to connect two nodes. In Guinea-
Bissau, for instance one location lies on the Bolama Islands just off the shore of mainland Guinea-Bissau. Its neighbouring
locations are all on the mainland and hence unreachable by car. In other cases, both locations to be connected are in deep
jungle or swampy regions. In all these cases, I treat the link as if the two locations were not neighbours in the first place. That
implies I even forgo the backup possibility of walking the entire distance, assuming that agents cannot walk between islands
or through the densest jungle.
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Figure 1: Road networks for different countries as scanned off OSM

(a) Burkina Faso
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Burkina−Faso (b) Mali
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Democratic−Republic−of−the−Congo (d) Rwanda
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Road networks as scanned off Open Street Map (OSM). Black lines represent routes from each grid cell centroid to each of its eight
surrounding neighbours. These routes may include a portion walked by foot in order to get to the nearest street. Connections in which
walking the entire distance is faster are printed as thin lines. Data scanned in July 2019.

available as a backup. Empirically, average speeds range between 6 km/h (Mauritania, where most
routes go through the desert and have to be covered by walking) and 33 km/h (Swaziland).

To parameterise iceberg trade costs defined in equation (1), I follow Fajgelbaum and Schaal and
set β = 1.245 and γ = 0.6225. I calibrate δτ

i,k following Atkin and Donaldson (2015)’s estimate of
the distance coefficient of the gravity equation. Directly taking the average of the authors’ two point
estimates for Ethiopia and Nigeria, I calculate

δτ
i,k = 0.0466 × ln(Distancei,k) (6)

as the trade cost elasticity to distance travelled.8

δI
i,k from equation (3) denotes the relative constant cost of increasing the average speed on a given

link by one. I follow Fajgelbaum and Schaal who in turn make use of a recent study by Collier et al.
(2015), which estimates infrastructure building costs in developing countries. Readily applying their

8Atkin and Donaldson (Table 2, page 44) estimate the coefficient as 0.0374 for Ethiopia and 0.0558 for Nigeria. My param-
eter is the simple average of these two point estimates.
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specification, I calculate

ln(δI
i,k,c) = δI

c + 0.12 × ln(Ruggednessi,k,c) + ln(Distancei,k,c) (7)

as the constant cost of increasing infrastructure Ii,k on the link between i and k in country c.
Distancei,k,c denotes the road distance travelled between nodes and enters positively, implying that
longer roads are costlier to develop as every single road kilometre will have to be improved. The
term Ruggednessi,k,c denotes the average ruggedness between grid cells i and k and enters positively,
highlighting the additional expenses accompanied with building on uneven terrain.9 δI

c is a country-
specific scaling parameter. Its main purpose it to ensure that equation (3) is satisfied with K = 1. I
first appraise the infrastructure network Ii,k of all countries and then flexibly alter δI

c for each nation
individually in order to comply with equation (3).

To build incentives for trade, I introduce N = 6 different varieties. First, the four most populous
grid cells of a given country are assumed to be producing their own variety. This creates incentives
for trade between major cities. Another ”international” variety is supplied by the three most pop-
ulous grid cells within each country’s border buffer. This ensures incentives for international trade
with big localities beyond the border. I also collect data from Lloyd’s List on grid cells which are
home to a major international port.10 Every port location (within a country’s borders or within its
international buffer) not covered by the previous varieties is assumed to also produce the ”rest of
the world” variety. Lastly, every other location is assumed to produce a sixth, ”agricultural” variety.

After these steps, a discretised network representation exists for every African country. Figures
2a,2c,2e present such networks for three countries. Nodes are printed larger proportional to their
population. Edges are drawn thicker proportional to the initial infrastructure investment. Grid
cells producing a variety other than the agricultural variety are highlighted with an additional circle
around them.

3.3 Trade network optimisation

For each country, I conduct two simulations. In both exercises, I calibrate the curvature parameter
of the utility function at α = 0.4 and the elasticity of substitution parameter at σ = 4. In the first
simulation exercise, infrastructure Ii,k is treated as fixed. This is to obtain a baseline estimate of
the spatial variation of welfare in each country. The social planner would like to overcome these
differences, but is confronted with trade costs which might leave certain remote areas much worse
off than well-connected ones.

Following this static exercise, I proceed to the main task of endogenizing the infrastructure matrix
Ii,k. With the network building constraint binding total infrastructure investment at the level of
the current road network, the social planner is now free to reshuffle roads within the country in
order to improve connections as she chooses. If she wants to improve the connection between two
given locations, she will have to take away infrastructure from somewhere else in the country. This
reallocation exercise does not seek to identify where to place the optimal next investment, but rather
represents a hypothetical scenario in which every road can be lifted from the ground, reshuffled, and
eventually located someplace else.11 The procedure does not measure how many roads a country

9Data on local ruggedness come from Henderson et al. (2018) and is described in more detail with other geographical
covariates below.

10I use the open-access portal at https://directories.lloydslist.com/port and hand-code the locations of the 90 biggest ports
in Africa. Figure A.4a prints the resulting locations.

11Note that equation (3) only fixes ∑i ∑k∈N(i) δI
i,k Ii,k = K. Hence, not the overall sum of infrastructure is fixed, but more

precisely the overall cost of infrastructure. This still allows the social planner to take away one unit of infrastructure on a

9
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has, but rather how well they are placed.
When conducting these optimisations, I fix infrastructure in the international buffer around each

country at their current level. While the planner takes into account the economic geography of a
country and its surroundings, she can only reallocate infrastructure within the country in question.12

I conduct the reallocation scenario for every African country. Six small countries (Cape Verde,
Comoros, The Gambia, Mauritius, São Tomé and Prı́ncipe, and Reunion) are too small to form a
sensible network as they only show up as a single location in the dataset and are henceforth no
longer considered. Optimisations are performed with a version of the optimisation toolkit provided
by Fajgelbaum and Schaal (2020). When conducting the simulations, I bind the social planner’s set of
permissible roads from below at 4 km/h. This is motivated by the assumption at the beginning that
walking straight lines at this speed is an outside option and always available to any traveler. I also
impose a maximum speed of 120 km/h on any given link (such that 4 ≤ Ii,k ≤ 120 ∀ i ∈ I , k ∈ N(i)).

Figure 2 visualises this reallocation exercise for several countries. Subfigure 2a displays the dis-
cretised network representation of Burkina Faso. The edges to this network are printed almost
evenly thick, implying that infrastructure is fairly evenly distributed across the country. Subfig-
ure 2b then displays the country after the network reshuffling exercise. Three patterns stand out.
First, the social planner sees a clear need to connect the populous areas in the center of the coun-
try with each other. For that, the social planner is willing to salvage some of the apparently less
important infrastructure in the north of the country. Second, there still is a benefit to having a few
trails connecting the center with a regional hub in the south-west producing it’s own variety. Third,
nodes are printed in a colour scale corresponding to individual welfare gains and losses for each
location. As can be seen from first-glance, most southern regions (brighter colors) stand to gain from
this scenario, while the big cities on average seem to lose (darker colors).

The Democratic Republic of Congo in Figures 2c – 2d displays a more decentralised optimal
network solution. The social planner sees need to better connect the center of the country to its
surroundings and the populous border regions. This is in line with the common perception of DRC’s
periphery being notoriously poorly connected to the centers of power and commerce. As a result,
large parts in the southern center of the country gain welfare in this scenario, while many border
regions (especially in the west) lose out. Small Rwanda in Figures 2e – 2f helps to illustrate some
of the forces at hand in a less crowded graph. Starting from a fairly evenly distributed transport
network, the reallocation dynamics lead to much more variation in infrastructure provision. Some
links are deemed superfluous and hence reduced to the smallest admissible level, while others are
scaled to multiple times their starting infrastructure stock.

4 A measure of spatial transport network inefficiency

After successfully reshuffling a country’s transport network, national welfare will by construction
(weakly) increase. While overall production (light output) will be unaffected by the exercise, any
welfare gains are solely caused by enabling mutual benefits from trade through connecting the right

very expensive (high δI
i,k) link and exchange it for much more than one unit on a cheaper (low δI

i,k) link.
12There are two reasons why I conduct the simulation procedure within countries and not over the entire African continent.

One is computational; the requirements for numerically solving the model increase quadratically in the number of locations I .
The largest country in Africa (Algeria) is made up of almost 900 locations and already strains computing power quite heavily.
Simulating all of Africa’s 10,000+ locations at once is then almost unattainable with available technology. The second reason
is interpretational; while lifting a country’s roads from the ground and flexibly reshuffling them across the nation is already
a fictitious scenario, it still operates within a government transport authority’s locus of control. Regions disadvantaged by
their own government can reasonably be considered discriminated against. This is less the case if one were to optimise over
the entire continent. Without a central planning body for all of Africa, it is hard to interpret why a road in e.g. Tunisia should
rather be moved into Namibia.
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Figure 2: Reallocation scenario for different countries

(a) Burkina Faso before reallocation

Burkina−Faso

(b) Burkina Faso after reallocation

Burkina−Faso

(c) DRC before reallocationDemocratic−Republic−of−the−Congo (d) DRC after reallocationDemocratic−Republic−of−the−Congo

1.255

1.062

1.036

1.018

1.005

0.995

0.858

(e) Rwanda before reallocationRwanda (f) Rwanda after reallocationRwanda

Results from optimally reshuffling roads in three African countries. In each network graph, every node represents a grid cell centroid
location with radius proportional to the size of its local population. Edges are drawn thicker depending on their allotted infrastructure Ii,k
(i.e. average attainable speed). In the optimal networks on the right, nodes are coloured based on their relative welfare gains and losses,
with more light areas gaining more. Color scheme is the same as in Figure 3a.
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Figure 3: Africa by network inefficiency

(a) Λi across the continent

0.858

0.995

1.005

1.018
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1.062

1.255

(b) Welfare gains by country

Hypothetical welfare gain

Swaziland
Guinea−Bissau

South−Africa
Egypt

Tunisia
Morocco
Togo
Algeria
Rwanda
Equatorial−Guinea

Djibouti
Burundi

Nigeria
Cote−dIvoire
Lesotho

Ghana
Malawi
Sierra−Leone
Liberia

Africa
Congo
Central−African−Republic

Senegal
Eritrea
Benin
Kenya
Namibia
Zimbabwe
Western−Sahara
Zambia

United−Republic−of−Tanzania
Botswana
Mozambique
Guinea

Uganda
Cameroon
Libya

Burkina−Faso
Niger

Mauritania
Mali

Democratic−Republic−of−the−Congo
Ethiopia

Chad
Angola

Sudan
Gabon

Somalia
Madagascar
South−Sudan

0% 1% 2% 3% 4%

(c) Burkina Faso (d) Mali (e) DRC (f) Sudan

Discrimination index at the grid cell level (a) and welfare gain under the optimal reallocation counterfactual for each country (b). Country
gains are computed by comparing the population-weighted mean of the discrimination index of all cells in a country. (c-f) zoom in on four
countries and their discrimination index. Maps show each country as the 0.5 × 0.5 degree grid used for the network optimisation. For
each map, darker shaded cells correspond to lower Λi levels and hence less infrastructure discrimination compared to the optimal network.
All maps share the same color scale, reported in (a).

locations. Nevertheless, they are not negligible. The DRC of Figure 2d, for instance, stands to gain
2.1% of overall welfare just by reshuffling its roads. Burkina Faso (1.7%) and Rwanda (0.4%) are
closer to their hypothetical optimum.

Figure 3b reports hypothetical welfare gains for all African countries. Some nations like South
Africa (0.2% welfare gains) or Tunisia (0.3%) perform better than the three countries from above.
Many countries are leaving much more on the table, like Somalia (3.7%) or Madagascar (also 3.7%).
No African country has a more inefficiently placed road network than South Sudan. Its citizens
stand to gain 3.8% of overall welfare if just their roads were better placed. This maybe comes as no
surprise, as the world’s newest country has largely inherited a road network that was not conceived
to sustain an independent nation, but rather connect it to its former capital up north. For the entire
continent, optimal reallocation of national road systems would improve overall welfare by 1.0%.

Forgone welfare gains can be conceived as an intuitive measure for overall network inefficiency.
The closer hypothetical gains to zero, the more efficient the current allocation of roads. Vice-versa, if
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a country stands to gain a lot from reshuffling, then the current network is deemed more inefficient.
On a simple cross-section, countries with less efficient networks are weakly correlated with less
property rights (p = 0.1), less 2010 log GDP per capita (p = 0.39), yet also less corruption (p = 0.2).13

While each country only stands to gain overall welfare from the reallocation procedure, individ-
ual locations might very well lose in the process. Intuitively, some regions might be equipped with
far too many good roads such that the social planner takes these roads away to use someplace else.
Comparing each grid cell’s welfare before and after the major reshuffling can help to identify regions
which are currently over or underprovided for. More formally, I define

Λi =
Welfare under the optimal infrastructurei
Welfare under the current infrastructurei

(8)

as the Local Infrastructure Discrimination Index Λi for grid cell i. Areas with high Λi scores (Λi > 1)
would be gaining under the optimal reallocation scenario and are hence under provided for in the
network’s current state. A score of Λi < 1 on the other hand, implies that a region is too well off
given its position in the network today and hence should be stripped off some of its infrastructure
to increase overall welfare.

Figure 3a displays the spatial distribution of Λi over all 10,000+ grid cells of the entire conti-
nent. The darker a grid cell’s shade, the more it is advantaged by the inefficiencies of the current
network. When interpreting this map, note that grid cells are undergoing the reshuffling scenario
solely within their respective country (while taking into account respective international buffer re-
gions). National borders hence play a role and can at times even clearly be inferred from the printed
map. Keeping this in mind, the map reveals substantial spatial variation in the index across the
African continent. The luckiest region stands to loose almost 25% of total welfare if the fictitious
social planner intervened and reshuffled roads away from it. On the other extreme of the spectrum,
the residents of the most discriminated grid cell are missing out on a welfare hike of almost 40%.
On average, a grid cell gains 2.7 per cent of welfare, the median cell gains 1.1%.14 Figures 3c – 3f
zoom in on a few countries. In Mali, the Saharan north west has roads reallocated away from it,
which benefits the more populous south. In the DRC, border regions are printed in dark shades and
hence clearly lose out in favor of the center. Sudan shows a reallocation of roads away from the Nile,
which can clearly be inferred from the map.

In interpreting Λi, keep in mind that this is a measure of differences in welfare. In this, it need
not be a direct mapping of changes in actual infrastructure provision. Indeed, the highly non-linear
nature of the optimal reallocation scenario can lead to situations in which a certain region substan-
tially profits from the optimal policy, even though it is not directly granted additional roads. Local
changes in welfare can instead be caused also by fortuitous peculiarities of geography – maybe a
neighbouring region emerges as a local trade hub, or the optimal network leads to broader avail-
ability in the variety of goods, all without directly targeting each individual grid cell with additional
roads. In my full dataset, changes in welfare Λi are hence not significantly correlated with local
changes in infrastructure.

In the final section, I analyse patterns behind the heterogeneity of infrastructure discrimination
over space.

13Data from The World Bank (2017). For corruption and property rights, data are only available for 35 countries and
correlations are hence performed on this truncated sample.

14Note that this number is higher than the 1% aggregate welfare gain for the continent because of variation in population
across space.
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5 The determinants of Africa’s spatial trade network imbalances

Why are some African roads not in the right place to promote beneficial trade? To investigate which
areas have too much or too little infrastructure, I employ the local infrastructure discrimination index
Λi as dependent variable in a standard OLS regression setting. In the base specification, I estimate

Λ̃i,c = βvi,c + Xi,cγ + δc + ϵi,c (9)

for a variety of different independent variables vi,c of grid cell i in country c. The dependent variable
Λ̃i,c corresponds to the z-scored transformation of Λic. δc denotes country fixed effects, X′

i,c is a vector
of controls, and β is the coefficient of interest. To account for spatial autocorrelation, I follow Bester
et al. (2011) and construct a higher-level spatial grid of 3 degrees latitude by 3 degrees longitude and
cluster standard errors within each of these higher-level grid cells.

Country fixed effects make observations comparable internationally by accounting for the fact
that reallocation is performed for each country individually. The vector of controls X′

i,c captures
observable characteristics of each grid cell that plausibly account for some of the variation in Λi.
Henderson et al. (2018) show that a surprisingly parsimonious set of geographical and agricultural
covariates explains a substantial part of the global variation in economic activity. Making use of
their data, I include in X each grid cell’s average altitude, average temperature and precipitation,
land suitability for agriculture, length of the annual growing period, and an index for the stability
of malaria transmission. I also include mutually exclusive (and collectively exhaustive) dummy
variables classifying each grid cell into one of twelve predominant vegetation regions (or biomes,
see Henderson et al., 2018).15 To flexibly control for any broad geographic trend over the entire
continent, I additionally add fourth-order polynomials of both latitude and longitude for each grid
cell. To take into account that some regions have a natural advantage in conducting trade, I also
include indicators for whether a grid cell’s centroid is within 25 kilometres of a natural harbour, big
lake, or navigable river respectively (again using data from Henderson et al., 2018), and whether a
grid cell is at the border of a country.

I call the set of controls outlined so far “Geographic Controls”. They are in principle unaffected
by human decisions about the design of trade networks. Another set of covariates, however, poses
more difficulties. These are the variables that were already used to calibrate the optimal reallocation
simulation from above, namely a cell’s population, light output, ruggedness, and classification into
urban and rural.16 I call these “Simulation Controls”. It is crucial to be aware that Λi is, among others,
already a product of the intricate interplay between these factors. There is hence a danger for plain
OLS to detect a spurious, mechanical relationship between them, potentially biasing results. In the
main analysis, I include the “Simulation Controls”; yet results are largely robust to excluding them.17

In this paper, I investigate three potential sources of network inefficiency in Africa: colonial era
infrastructure investments, ethnic power relations, and foreign aid.

5.1 Colonial infrastructure investments

Between 1890 and 1960, British, French, Belgian, German, Italian, and Portuguese administrations
all undertook efforts to permeate their colonies with more or less sophisticated railway networks

15Only eight of the twelve vegetation patterns are actually present on the African continent, the other indicators (biomes 4,
6, 8, and 11) are dropped from consideration.

16Recall that population and output were components of the planner’s problem, ruggedness went into the cost of building
new infrastructure δI

i,k , and the urban/rural classification determined which good a cell produced.
17Tables A.1,A.2,A.3 in the appendix replicate the tables of the main text while dropping the simulation controls.
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(Jedwab and Moradi, 2016). There were two main motivations for this: supporting the extrac-
tive economies and ensuring military domination (Jedwab et al., 2017). These colonial railroads
have been found to have a persistent impact on the spatial organisation of economic activity today.
Jedwab and Moradi (2016) show how urbanisation started to centre around railway tracks in the
decades following their construction. Even as most railway lines have fallen into disarray and road
traffic has replaced trains as the most important means of transportation, economic activity today
still clusters in places close to the former rail lines.

Did the transport revolution coordinate the economy on an efficient spatial equilibrium? To
investigate whether railways from the colonial period still have an impact on trade network inef-
ficiency today, I overlay the 10,000+ grid cells of my data set with every railway line built by the
colonial powers in Sub-Saharan Africa. Figure A.1 prints in red 237 lines built between 1890 and the
various independence dates. Data on railroad positioning comes from Jedwab and Moradi (2016),
with the exception of South Africa, for which I manually digitise a map from Herranz-Loncán and
Fourie (2017).18

For every grid cell, I compute the total number of colonial railway kilometres crossing the cell.
This serves as a measure for the stock of physical transport capital invested into each region. The
majority of cells (91%) are not crossed by a colonial railway and hence have zero railroad kilometres.
Those that are intersected by a line usually have between 20 and 60 railroad kilometres, while some
important rail crossings or transport hubs have up to 100 kilometres of railroads. Every railroad line
comes with a classification of being constructed primarily for military purposes or mining purposes
(or neither, or both), allowing for more nuanced further analysis. Lastly, to account for potential
endogeneity concerns, I also compute the same statistics for a set of railway lines the colonisers
planned, but never built. As Jedwab and Moradi (2016) explain, these ”placebo” projects were not
realised only for a series of arguably random historical events like unforeseeable cuts to financing,
the outbreak of wars, or sudden retirements of administration officials. These tracks are printed in
blue in Figure A.1.19

Table 1 displays results from OLS estimation of equation (9) with Λ̃i on the left hand side and
total rail kilometres as explanatory variable vi. Column (1) reports the baseline association between
colonial railways and present-day infrastructure discrimination: every 50 kilometres of colonial rail-
way construction are associated with grid cells losing 0.24 standard deviations of welfare at the hand
of areas without any investment. Column (2) repeats the exercise but using ”placebo” railroads. Re-
assuringly, we find no association between infrastructure discrimination and infrastructure that was
never built. Columns (3) and (4) distinguish between railroads built for different purposes: while
both military and mining purpose railroads are associated with too much infrastructure today, it is
in particular areas with military railroads that lose out under the reallocation scenario.

Columns (5) and (6) trace out the spatial gradient of infrastructure discrimination close to colo-
nial railroad lines. I cluster grid cells in bins depending on the distance of their centroid to the
nearest realised and placebo line. Grids with centroids further than 40KM away from a rail serve as
the omitted category. We observe a substantial gradient, with grid cells within 10KM of a realised
railroad being 0.33 standard deviations too well off. Magnitudes are similar for cells withing 20KM
of a railroad, after which the association tapers off. Cells between 20 and 30KM out are still favoured
by the current network, yet the planner reallocated much fewer infrastructure away from them. The
association becomes indistinguishable from zero even further out. No comparable associations can

18No comparable data are available for Madagascar, Egypt, and the Maghreb countries, which also saw some colonial
railway construction. Findings are robust to excluding grid cells from these countries.

19Data for placebo lines also come from Jedwab and Moradi (2016) and Herranz-Loncán and Fourie (2017)
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Table 1: Colonial railroads and local infrastructure discrimination index

Infrastructure discrimination Λ̃ (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.238∗∗∗

(0.0507)

50 KM of Colonial Placebo Railroads -0.198
(0.154)

50 KM of Colonial Railroads for Military Purposes -0.289∗∗∗

(0.0742)

50 KM of Colonial Railroads for Mining Purposes -0.161∗∗

(0.0575)

<10KM to railroad -0.332∗∗∗ -0.0973
(0.0674) (0.0511)

10-20KM to railroad -0.377∗∗∗ -0.0736
(0.0721) (0.0635)

20-30KM to railroad -0.141∗ 0.00604
(0.0669) (0.0656)

30-40KM to railroad 0.0295 0.0621
(0.0542) (0.0499)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
Simulation Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158
R2 0.165 0.162 0.164 0.162 0.168 0.162

Results of estimation of equation (9) on the sample of 0.5 × 0.5 degree grid cells for the entire African continent (excluding six small
countries, see text). Dependent variable is the z-scored Local Infrastructure Discrimination Index Λ̃i for each grid cell. Columns (1)-(4)
estimate the effect of colonial infrastructure investments as measured by the total number of colonial railroad kilometres of different types
crossing a cell. Geography controls, consisting of altitude, temperature, average land suitability, malaria prevalence, yearly growing days,
average precipitation, indicators for the 12 predominant agricultural biomes, indicators for whether a cell is a capital, within 25 KM of a
natural harbour, navigable river, or lake, the fourth-order polynomial of latitude and longitude, and an indicator of whether the grid cell
lies on the border of a country’s network. Simulation controls are comprised of population, night lights, and ruggedness. These indicators
went into the original infrastructure reallocation simulation and are hence not orthogonal to Λ. Standard errors are clustered on the 3 ×
3 degree level and are shown in parentheses.

be found for placebo railroads in column (6). This is suggestive evidence that the confounding ef-
fect of colonial infrastructure policies is locally contained. Areas blessed with a close-by railway
line are still too well off today, which comes at the expense of their neighbouring regions just a few
kilometres away.

The effects described in Table 1 are small, yet remarkable. Across the African continent, areas that
received large infrastructure investments a century ago are still too well off given their position in the
national trade network. In contrast, areas that were not crossed by tracks are inefficiently short on
infrastructure today. To see that this is a non-trivial finding, note that, firstly, most of the colonial rail-
way lines have been in disrepair for decades and thus do not immediately dictate trade flows today.
Secondly, recall that the optimal network reallocation and construction of Λi was based on roads and
cars, not rails and trains. The implication is hence not that colonial railway systems themselves are
inadequate to efficiently sustain inter-regional trade today. Rather the transport revolution a century
ago coordinated the entire economy into a certain spatial equilibrium, which persists even though it
has become inefficient. African nations would benefit from moving to a better equilibrium, but are
locked in the current state. The social planner identifies this, seeks to overcome these misallocations,
and moves infrastructure away from regions once considered important by the colonisers. The even
stronger findings for military railroads reinforces that point: while mining railroads arguably still
dictate trade flows today, military railroads have become completely obsolete and are much more
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clearly associated with imbalanced infrastructure stocks across space. In short, Jedwab and Moradi
show that colonial investments helped the economy to coordinate on one of many spatial equilibria
– my findings suggest that this is not the optimal one.20

5.2 Regional favouritism

The political economy of public good provision along ethnic lines presents an interesting case for the
spatial imbalances in my dataset. Are regions with less political clout systematically discriminated
against in the provision of trade infrastructure? One avenue to investigate differential infrastructure
provision to privileged places is to look at the birthplaces of political leaders. Existing studies have
shown that the rise to power of a new national leader leads to temporarily more consumption and
output in the leader’s birth region (Hodler and Raschky, 2014) and ethnic homeland (De Luca et al.,
2018). During the leader’s time in office, birth region and ethnic homelands also benefit from more
foreign aid and infrastructure investment being channeled their way (Dreher et al., 2019; Burgess
et al., 2015). To investigate whether ethnic favouritism accounts for imbalances in trade infrastruc-
ture provision over space, I make use of a dataset of African national leaders provided by Dreher
et al. (2019). The data entail information about the birth region and time in office of 117 heads of
state holding power in 44 African countries dating back to 1969.21 Using Open Street Map, I obtain
coordinates for birthplaces and spatially merge them with my grid dataset. I then use this informa-
tion to calculate for each cell the total number of years someone born there has held high office. This
allows me to analyse whether a region’s over provision with transport infrastructure covaries with
personal ties to national power.

Table 2 columns (1-4) investigate effects of such regional favouritism. Column (1) estimates equa-
tion (10) on the full sample of grid cells with the explanatory variable being the total number of
years someone born in that cell was holding national power. The covariate enters with a small and
insignificant coefficient, implying that for each year one of their members was in power, an ethnic
homeland is about 0.01 standard deviations too well off given their relative position in the coun-
try’s trade network. Column (2) looks at the extensive margin by correlating Λi with a dummy for
whether a grid cell ever sent someone to lead the country. We find a marginally significant negative
relationship: grid cells that ever were the birthplace for a national leader are 0.25 standard devia-
tions too well off today. If the social planner were to intervene, she would strip cells with regional
ties to power from some infrastructure and reallocate it towards areas with no such ties. Columns
(3-4) exclude capital grid cells from the dataset in an attempt to counter biases stemming from some
regions just being close to power generally. The negative associations from columns (1-2) prevail.

Lastly, I turn to ethnic homelands, which are arguably the more relevant unit of observation
when investigating regional favouritism on the African continent. I follow Michalopoulos and Pa-
paioannou (2013, 2014, 2016) and intersect an ethnolinguistic map of pre-colonial homelands from
Murdock (1959) with current national borders.22 I spatially aggregate my grid cell measure of net-
work inefficiency Λi onto the ethnicity-country level by assigning each grid cell an ethnicity based
on its centroid location and weighing grid cells by their respective population. Figure A.3 presents
the spatial variation of the local infrastructure discrimination index Λh for each ethnicity-country

20Note that the spatial equilibrium induced by colonial railroads could have still been optimal at the time. My argument
solely concerns the persistent effects of investments a century ago on network efficiency today.

21No data on national leaders are reported for Algeria, Western Sahara, South Sudan, Somalia, and Djibouti.
22Ethnicity data are available for every country but Western Sahara. Ethnicities present in more than one country count

as multiple observations. Of the 835 inhabited homelands identified by Murdock, 314 are split in two or more parts by the
current national borders, creating 1,212 ethnicity-country observations.
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pair h.23

I investigate patterns of infrastructure discrimination along ethnic lines by way of the negative
treatment of groups excluded from the government (ethnic discrimination). To measure ethnic dis-
crimination, I rely on three measures of political relationships between ethnicities. I make use of the
Ethnic Power Relations (EPR) database by Vogt et al. (2015), which globally identifies “politically rel-
evant ethnic groups and their access to state power” (Vogt et al., 2015, p. 1328) over the past seven
decades. Not every ethnic homeland inhabits a group that is “politically relevant”, significantly
truncating the to 432 observations.24 Firstly, EPR reports a yearly time series of political discrimina-
tion for every group in the sample. In particular, a group is coded as discriminated against by the
central government if there is “active, intentional, and targeted discrimination by the state against
group members in the domain of public politics” (Vogt et al., 2015, p. 1331). I follow Michalopoulos
and Papaioannou (2016) and analyse effects of a dummy variable taking on the value one if a group
has experienced discrimination in at least one year between 1960 and 2010 and use this measure to
investigate whether infrastructure discrimination covaries with political discrimination. Secondly,
I broaden the definition of ethnic discrimination and more generally look at groups which are ex-
cluded from the central government. As defined by EPR, this classification entails all groups that are
discriminated against (from above), plus groups that are defined as either powerless or self-excluded
(Vogt et al., 2015, p. 1331).25 Thirdly, I analyse the effects of an EPR indicator denoting whether an
ethnicity was part of a civil war with an explicitly ethnic dimension at some point between 1960 and
2010. The construction of this indicator is identical to the dummies described above and is obtained
from Michalopoulos and Papaioannou (2016).

To analyse patterns of infrastructure discrimination on the ethnic homeland level, I estimate a
slightly different version of equation (9)

Λ̃h,c = βvh,c + Xh,cγ + δc + ϵh,c (10)

where Λ̃h,c is the z-scored local infrastructure discrimination index for homeland h in country c,
X′

h,c and δc again denote controls and country fixed effects respectively, vh,c are the explanatory co-
variates discussed above, and β is the coefficient of interest. The number of ethnicity observations
(about 430) is significantly smaller than the number of grid cells. In order to avoid overfitting, I
slightly truncate the set of controls X′

h,c. I replace the latitude and longitude polynomials as well
as dummies indicating proximity to a natural harbour, river, lake, and national border with two
continuous measures of distance to the nearest border and distance to the coast. As homelands are
much more irregularly shaped than grid cells, I also include the natural logarithm of each home-
lands’ area (as in Michalopoulos and Papaioannou, 2016). Apart from these adjustments, X′

h,c entails
all geographical and simulation controls of the models on the grid cell level. I follow Michalopoulos
and Papaioannou (2016) and double-cluster standard errors at both the country level as well as the
ethnic family level using the mechanism proposed by Cameron et al. (2011).

Table 2 columns (5-7) report results. The estimates of being discriminated against or involved in
an ethnic war are not significantly different from zero, implying that the social planner would on
average not reallocate infrastructure away or towards those areas. Slightly puzzling is the result in

23The homeland which would benefit most from national reshuffling of roads is the Kababish in Sudan (who would gain
18%). The most disproportionally advantaged ethnic homelands in Africa are those of the Kreish (11%) of the Central African
Republic (who stand to lose 10% of welfare if optimal networks were imposed).

24Merging EPR observations with ethnic homelands is non-trivial. Thankfully, I am able to rely on the conversion estab-
lished by Michalopoulos and Papaioannou (2016)

25I again rely on the transformation by Michalopoulos and Papaioannou (2016) who code an indicator as one if the ethnic
group has experienced exclusion from the government at any point between 1960 and 2010.
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Table 2: Ethnic favoritism

Λ̃: entire sample Λ̃: excluding capitals Λ̃: ethnic homeland level

(1) (2) (3) (4) (5) (6) (7)

Total years in power -0.00927 -0.0121∗

(0.00474) (0.00538)

Ever in power dummy -0.253∗ -0.296∗

(0.110) (0.122)

Discriminated against -0.194
(0.158)

Excluded from government -0.365∗∗

(0.121)

Involved in ethnic war -0.235
(0.180)

Country FE Yes Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes Yes
Simulation Controls Yes Yes Yes Yes Yes Yes Yes
N 10158 10158 10109 10109 494 494 494
R2 0.162 0.162 0.164 0.164 0.255 0.264 0.257

Persistent impacts of holding power on local infrastructure discrimination in leaders’ birthplaces and across ethnic homelands. Columns
1-4 estimates equation (10) on the grid cell level. Independent variable in columns (1) and (3) is the number of years since 1969 someone
born in the homeland was the country’s leader. In (2) and (4), the independent variable is a dummy indicating whether the cell ever
held power. Columns (3)–(4) replicate the regressions while excluding observations containing a country’s capital. Geography controls,
consisting of altitude, temperature, average land suitability, malaria prevalence, yearly growing days, average precipitation, indicators
for the 12 predominant agricultural biomes, indicators for whether a cell is a capital, within 25 KM of a natural harbour, navigable
river, or lake, the fourth-order polynomial of latitude and longitude, and an indicator of whether the grid cell lies on the border of a
country’s network. Simulation controls are comprised of population, night lights, and ruggedness. These indicators went into the original
infrastructure reallocation simulation and are hence not orthogonal to Λ. Columns (5–7) estimate equation 10 on the ethnic homeland by
country level. Geography controls there are slightly truncated (see text). Standard errors are (double-)clustered on the country level (and
the ethnic-family level for homelands) and are reported in parentheses.

column (6): homelands excluded from government on average have too high infrastructure stocks
(yielding lower Λi discrimination scores and hence a negative estimate). One could interpret this
as preliminary evidence of access to power and access to infrastructure being substitutes, wherein
elites tilt the trade network in the country towards regions they want to keep quiet and away from
government. Of course, the estimations in this section are not well identified and as a result could
also just be spurious.

5.3 Foreign aid

Africa is the primary target of international aid. In 2017, African countries received more World
Bank aid than Europe, Central Asia, Latin America, and the Caribbean combined (The World Bank,
2017). Of almost 12 billion US dollars worth of lending commitments, the biggest share was awarded
to projects aimed at improving transportation infrastructure.26 The World Bank is not alone – in the
past decade, non-traditional players have entered and disrupted the international development aid
system (Dreher and Lohmann, 2015). Most notably, China has emerged as a significant donor na-
tion, funding development projects in at least 50 African countries since the turn of the millennium
(Strange et al., 2017). Yet despite the vast amount of resources involved, foreign aid has not yet been
unequivocally proven to be linked with positive economic outcomes in recipient countries (Burnside

26The transport sector made up 18% of total IBRD and IDA lending to African nations, followed by water and sanitation
(14%), energy and extractives (14%), and public administration (12%) (The World Bank, 2017).
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and Dollar, 2000; Easterly et al., 2004; Rajan and Subramanian, 2008; Clemens et al., 2012; Clemens
and Kremer, 2016; Nunn and Qian, 2014).

To investigate whether international development aid is quantitatively associated to my measure
of trade network inefficiency, I make use of two datasets of geo-referenced aid flows to Africa. Firstly,
AidData (2017) in cooperation with the World Bank, tracks over 5,600 lending lines from the World
Bank to African nations and reports precise coordinates of over 60,000 projects financed through
these funds, totalling more than 300 billion US dollars. The sample comprises all projects approved
between 1996–2014. As Strandow et al. (2011) describe, attributing projects to locations relies on
a double-blind coding procedure of various World Bank documents. Secondly, I explore patterns
from a similar database on Chinese aid projects by Strange et al. (2017). They resort to reports from
numerous local and international media outlets to track official and unofficial financing lines to over
1,500 projects worth 73 billion US dollars in the period 2000–2011.27

For the purpose of this study, I exclude aid projects with no clear-cut geographical target like un-
conditional lending lines to the central government or assistance for political parties. I also exclude
flows with unknown or only vague information on eventual project location.28 I also ignore projects
which were still under construction or otherwise not fully completed by the end of 2017. Together,
these steps truncate the World Bank sample by 35% and the China sample by 52%. In Figure A.2, I
map the spatial distribution of aid projects from both remaining samples. I aggregate the total value
of aid disbursements from the remaining 10,786 World Bank projects and 1,420 Chinese projects onto
the grid cell level. Of the 10,158 grid cells of my sample, more than 21% have received some form of
assistance from either source.29

Do donor institutions identify places most in need of additional infrastructure? I employ various
indicators of aid provision in the standard grid cell level framework based on equation (9). I rely
on two measures to quantify the prevalence of foreign aid: the total value of aid disbursements to
a grid cell in 2011 US dollars and the number of distinct project sites within a given cell. I also
put additional emphasis on infrastructure by separately analysing variation in funds going only to
infrastructure projects in the transportation sector.

Table 3 reports results. Columns (1–4) investigate the spatial distribution of World Bank assis-
tance. The estimates reveal seemingly opposing objectives between the Bank and the social planner.
Negative estimates in columns (1) through (4) imply that grid cells receiving more World Bank as-
sistance score lower on the discrimination index Λi. Every additional million US dollar flowing into
an area is associated with the grid cell being about 0.004 standard deviations too well off. Focusing
on transport sector projects only, results are qualitatively similar, yet much stronger. The average
transport infrastructure project size of around 3 million US dollars goes to grid cells which stand
to lose 0.02 standard deviations of welfare under the reallocation exercise. Similar effects hold on
the extensive margin reported in columns (3) and (4). Columns (5–8) present very similar results for

27As Strange et al. point out, media reports are often based on initial press releases and do not necessarily follow up on
the eventual disbursement of every promised dollar. In that, the dataset is likely to capture Chinese funding commitments
rather than actual disbursements. Insofar as donors usually commit to more than they eventually deliver, these figures present
an upper bound of realised development assistance. Furthermore, while AidData (2017) claim their dataset on World Bank
projects to be exhaustive, the dataset on Chinese aid will naturally miss some unofficial flows, as significant parts of Chinese
involvement remain untracked.

28Specifically, I exclude all projects with a precision code of more than 3 – this corresponds to projects only identified at
province-level or above. The remaining entries are geo-coded either exactly (61%), within a 25 kilometre radius (4%), or with
municipality-level precision (35%) (Strandow et al., 2011)

29All disbursements are adjusted to 2011 US dollars. For projects with multiple sites, I assume total disbursement value
to be split evenly between sites. On average, these cells receive aid volumes of more than 30 million US dollars. The area
receiving the most total World Bank funding is the grid cell containing Uganda’s capital Kampala. The biggest beneficiary
of Chinese development assistance is a grid cell in the south of Congo-Kinshasa, where Chinese funds of almost 5 billion US
dollars helped construct a vast copper mining infrastructure.
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Table 3: International aid and local infrastructure discrimination

Λ̃: World Bank Λ̃: China

(1) (2) (3) (4) (5) (6) (7) (8)
Total disbursements (mil $) -0.00480∗∗∗ -0.000634∗∗∗

(0.00115) (0.000180)

Total transport sector disbursements (mil $) -0.00718∗ -0.000726∗∗

(0.00278) (0.000276)

Number of projects -0.0287∗∗∗ -0.0379∗∗∗

(0.00500) (0.00994)

Number of transport sector disbursements -0.0422∗∗∗ -0.0744∗

(0.00819) (0.0306)
Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes Yes Yes
Simulation Controls Yes Yes Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158 10158 10158
R2 0.164 0.163 0.166 0.165 0.163 0.162 0.163 0.163

Grid cell level estimations of equation (9) with z-scored local infrastructure discrimination Λ̃i as dependent variable and different measures
of foreign aid flows into grid cells as explanatory covariates. Columns (1–4) investigate World Bank assistance. Column (1) analyses total
disbursement value from World Bank projects approved from 1996–2014 in 2011 US dollars, which were completed by 2017. (2) only uses
a subset of projects in the transport sector. (3)–(4) use the same data but focus on the number of distinct project sites within each grid cell.
Columns (5–8) repeat the same estimations, but with data on Chinese aid projects between 2000–2011. Geography controls, consisting
of altitude, temperature, average land suitability, malaria prevalence, yearly growing days, average precipitation, indicators for the 12
predominant agricultural biomes, indicators for whether a cell is a capital, within 25 KM of a natural harbour, navigable river, or lake,
the fourth-order polynomial of latitude and longitude, and an indicator of whether the grid cell lies on the border of a country’s network.
Simulation controls are comprised of population, night lights, and ruggedness. Chinese aid data are more likely to reflect commitments
rather than actual disbursements. Standard errors are clustered on the 3 × 3 degree level and are shown in parentheses.

Chinese aid. Chinese assistance also systematically flows into privileged cells, with intensive margin
point estimates of the association ranging between a quarter and a tenth of the World Bank results.
On the extensive margin, more Chinese projects are similarly associated with higher trade network
imbalances. For each new development site financed by China in a certain cell, the social planner
intervenes and allocates 0.04 to 0.07 standard deviations of welfare away from the cell (columns 7–8).

These relationships should by not interpreted as causal effects. Since the placement of aid projects
is not random, numerous other channels could account for the patterns depicted in Table 3. The
donor’s investment strategies might for example be motivated by increasing returns to scale. If the
World Bank believes in an environment with multiple equilibria, where small initial investments set
in motion a dynamic of spillover externalities, labour migration, and follow-up investments, it is
often the right decision to fund projects in places that will not immediately harness their full capa-
bilities (Krugman, 1991; Duranton and Venables, 2017). These investments will necessarily appear
inefficient in promoting optimal trade today, yet spur transformative development tomorrow (see
Michaels et al., 2021). Embedding the reallocation exercise in a New Economic Geography frame-
work of increasing returns and labour mobility might be a valuable extension to better evaluate
specific place-based policies.

6 Conclusion

In this study, I have identified spatial inefficiencies in Africa’s trade network. I first constructed a
comprehensive economic topography of the entire continent, bringing together data from a variety
of sources like satellites, census bureaus, and open source online routing services. I then presented
a simple six-sector endowment network trade model and simulated the flow of goods through the
internal geography formed by 10,000 African regions and almost 75,000 network connections. Har-
nessing the recent theoretical contribution by Fajgelbaum and Schaal (2020), I proceeded to endog-
enize the transport network in order to derive the unique optimally reorganised road network for
every country in Africa.

21



In the second part of this study, I compared each country’s current network to its hypothetically
optimal one. I ranked countries by overall network efficiency and presented a fine-resolution spa-
tial dataset quantifying which sub-national areas are disadvantaged by the status quo. I empirically
investigated patterns of trade network imbalances over space and linked inefficiencies to persistent
lock-in effects caused by colonial infrastructure investments and differential treatment on the basis
of regional favouritism. I found no consistent association with ethnic discrimination. I also doc-
umented how development assistance by the World Bank and China has not targeted the regions
identified as most in need of additional investment.

In contributing a comprehensive spatial measure on the differential provision of a primary public
good covering an entire continent, my study provides the quantitative foundation for many more
research questions pertaining to inequality over space. Future research designs could employ my
dataset to analyse regional roots of conflict, political activism, social mobility, or subjective overall
wellbeing. Another interesting avenue for inquiry could be to investigate whether infrastructure
inefficiency spatially covaries with the provision of other public goods like education, health, or
security.

Identifying spatial inefficiencies and understanding their historical, cultural, and political roots
can be the first step in outlining effective place-based policies. Equipped with an unparalleled avail-
ability of spatial data and computing power, policymakers in Africa and around the world should
feel empowered to combat local imbalances and design powerful interventions to better connect
millions.
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and Luc Girardin (2015). Integrating Data on Ethnicity, Geography, and Conflict: The Ethnic
Power Relations Data Set Family. Journal of Conflict Resolution 59(7), pp. 1327–1342

25



Appendix

A Numerically solving the planner’s problem

The full planner’s problem on page 5 consists of a very large number of choice variables and hence
requires vast computation efforts when solved directly. Fortunately, Fajgelbaum and Schaal (2020)
provide guidance on how to transform this primal problem into its much simpler dual representation.
The following section illustrates how to use their derivation to numerically solve my version of the
model.

To show how a unique global optimum exists, first note that every constraint of the social plan-
ner’s problem is convex but potentially for the Balanced Flows Constraint. However, the introduction
of congestion causes even the Balanced Flows Constraint to be convex if β > γ. To see this, note that
every part of the lengthy constraint is linear, but for the interaction term Qn

i,kτn
i,k(Q

n
i,k, Ii,k) represent-

ing total trade costs. Since τn
i,k was parameterised as in (1), this expands to

Qn
i,kτn

i,k(Q
n
i,k, Ii,k) = δτ

i,k
(Qn

i,k)
1+β

Iγ
i,k

(A.1)

which is convex if β > γ. Under this condition, the social planner’s problem is to maximise a
concave objective over a convex set of constraints, guaranteeing that any local optimum is indeed
a global maximum.A.1 β > γ describes a notion of congestion dominance: increased infrastructure
expenditure might alleviate the powers of congestion, but it can never overpower it. It precludes
corner solutions in which all available concrete is spent on one link, all but washing away trade costs
and leading to overwhelming transport flows on this one edge. If β > γ, geography always wins.

Consider first the full Lagrangian of the primal planner’s problem

L = ∑
i
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(A.2)

This is a function of the choice variables (Cn
i , Qn

i,k, ci, Ii,k) in all dimensions ⟨i, k, n⟩ and the La-
grange multipliers (λC, λP, λI , ζQ, ζC, ζc, ζ I) also in ⟨i, k, n⟩. Standard optimisation yields first-order

A.1This is Fajgelbaum and Schaal Proposition 1.
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conditions which can be collapsed to the following set of equations
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(A.3)

These directly follow the more general framework outlined in the technical appendix of Fajgelbaum
and Schaal applied to my version of the model. In the final equation denoting optimal infrastructure

supply, κ = γ(1 + β)
− 1+β

β , and the multiplier λI is such that adherence to the Network Building
Constraint is ensured. Note that there is a typo in the original authors’ paper which prints one of

the exponents as (δτ
i,k)

1
β when it should be (δτ

i,k)
− 1

β . Through these algebraic manipulations, I have
expressed all choice variables as functions of merely the Lagrange parameters λP over dimensions
⟨i, k, n⟩. I can hence recast the entire Lagrangian in much simpler form as

L(λ, x(λ)) = ∑
i

Liu(ci(λ))

− ∑
i

∑
n

λP
i,n

[
Cn

i (λ) + ∑
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j,i(λ)
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where x(λ) denote the choice variables as functions of the Lagrange parameters as derived above.
Fajgelbaum and Schaal note that thanks to complementary slackness, all other constraints can be
readily dropped from consideration and only the Balanced Flows Constraint remains part of the prob-
lem.

As Fajgelbaum and Schaal further explain, the dual of this problem can now be conceived as the
minimisation of

min
λ≥0

L(λ, x(λ))

which is an optimisation problem over merely
∥∥λP

∥∥ = I × N variables. Fajgelbaum and Schaal in-
terpret λP as a field of prices varying over goods and locations. I am left only to minimise equation
(A.4) to obtain the price-field λP. I implement constrained optimisations within the fmincon envi-
ronment in MATLAB and achieve fairly fast convergence. Solving for smaller networks (like Rwanda
or Djibouti) is a matter of seconds, yet the largest countries (Algeria, Angola, DRC, and Sudan) each
take about a day of computation time (on a five-year old device, nonetheless). Plugging the derived
λP parameters into the various FOCs in (A.3) yields the optimal transport network Ii,k, trade flows
between locations Qn

i,k, and consumption patterns Cn
i and ci.
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B Additional figures and tables

Figure A.1: Colonial railway network

Maps displaying the network of railway lines (red) and placebo railroads (blue). Data from Jedwab and Moradi (2016) and Herranz-
Loncán and Fourie (2017). Railroads built by the colonial powers between 1890 and 1960 are printed in red. Lines that were initially
planned but never actually built are printed in blue.

Figure A.2: Spatial distribution of development aid projects to African nations

(a) World Bank aid (b) Chinese aid

Foreign aid projects funded by the World Bank (A.2a) and China (A.2b). Each dot represents one project site with radius proportional to
the logarithm of total disbursements flowing to each site. World Bank data comprise all projects approved between 1996–2014. Chinese
data include tracked projects between 2000–2011. Map only depicts projects coded with sufficient precision to not be excluded (see text).
If a project has multiple sites, total disbursements are assumed evenly distributed between locations. Data from AidData (2017) and
Strange et al. (2017). Legend denotes disbursement values in million 2011 US dollars. Note that the legends have different scales.
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Figure A.3: Λh over ethnic homelands

0.961

1.003

1.011

1.018

1.027

1.038

1.111

Spatial distribution of local infrastructure discrimination index Λh, aggregated over ethnic homelands. Unit of observation is pre-
colonial homelands as initially defined in an ethnolinguistic map by Murdock (1959) intersected by current political borders (following
Michalopoulos and Papaioannou, 2016). Λh is from grid cell level.
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Figure A.4: Further spatial data used

(a) Locations of ports (b) Leaders’ birthplaces

Spatial distribution of ports and leaders’ birthplaces across the continent. Ports data is hand-coded from Lloyd’s list at
https://directories.lloydslist.com/port and corresponds to the 90 biggest ports in Africa. Birthplace data from Dreher et al. (2019).

Table A.1: Colonial railroads: No simulation controls

Infrastructure discrimination Λ̃ (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.241∗∗∗

(0.0500)

50 KM of Colonial Placebo Railroads -0.183
(0.154)

50 KM of Colonial Railroads for Military Purposes -0.285∗∗∗

(0.0739)

50 KM of Colonial Railroads for Mining Purposes -0.159∗∗

(0.0585)

<10KM to railroad -0.327∗∗∗ -0.0960
(0.0652) (0.0511)

10-20KM to railroad -0.374∗∗∗ -0.0670
(0.0716) (0.0636)

20-30KM to railroad -0.134∗ 0.0110
(0.0666) (0.0654)

30-40KM to railroad 0.0355 0.0630
(0.0544) (0.0500)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
Simulation Controls No No No No No No
N 10158 10158 10158 10158 10158 10158
R2 0.163 0.160 0.162 0.160 0.166 0.160
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Table A.2: Ethnic favoritism: No simulation controls

Λ̃: entire sample Λ̃: excluding capitals Λ̃: ethnic homeland level

(1) (2) (3) (4) (5) (6) (7)

Total years in power -0.0111∗ -0.0135∗∗

(0.00442) (0.00517)

Ever in power dummy -0.275∗ -0.331∗∗

(0.106) (0.115)

Discriminated against -0.194
(0.157)

Excluded from government -0.363∗∗

(0.122)

Involved in ethnic war -0.227
(0.178)

Country FE Yes Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes Yes
Simulation Controls No No No No No No No
N 10158 10158 10109 10109 494 494 494
R2 0.160 0.160 0.160 0.161 0.253 0.262 0.255

Table A.3: International aid: No simulation controls

Λ̃: World Bank Λ̃: China

(1) (2) (3) (4) (5) (6) (7) (8)
Total disbursements (mil $) -0.00408∗∗∗ -0.000594∗∗∗

(0.000876) (0.000176)

Total transport sector disbursements (mil $) -0.00654∗∗ -0.000661∗

(0.00201) (0.000256)

Number of projects -0.0207∗∗∗ -0.0311∗∗∗

(0.00395) (0.00903)

Number of transport sector disbursements -0.0350∗∗∗ -0.0625∗

(0.00733) (0.0287)
Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes Yes Yes
Simulation Controls No No No No No No No No
N 10158 10158 10158 10158 10158 10158 10158 10158
R2 0.162 0.161 0.163 0.162 0.161 0.160 0.161 0.161
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