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Abstract

I assess the efficiency of transport networks for every country in Africa. Using spatial data from
various sources, I simulate trade flows over more than 70,000 links covering the entire continent. I
maximise over the space of networks and find the optimal road system for every African state. My
simulations predict that Africa would gain 1.3% of total welfare from reorganising its national road
systems, and 0.8% from optimally expanding it by a tenth. I then construct a dataset of local net-
work inefficiency and find that colonial infrastructure projects significantly skew trade networks
towards a sub-optimal equilibrium today. I find suggestive evidence that regional favouritism
played a role sustaining these imbalances.

1 Introduction

Trade costs in Africa are the highest in the world, severely inhibiting interregional trade (Limao and
Venables, 2001; The Economist, 2015; Nugent and Lamarque, 2022). Sub-Saharan Africa’s coverage
with paved roads is by far the lowest of any world region, with only 31 total paved road kilome-
tres per 100 square kilometres of land, compared to 134 in other low-income countries (Foster and
Briceño-Garmendia, 2010). The World Bank has identified an annual infrastructure gap amounting
to 93 billion US dollars and urges countries in Sub-Saharan Africa to spend almost one per cent of
GDP on building new roads (Foster and Briceño-Garmendia, 2010; Nugent and Lamarque, 2022).
This reasoning is also reflected in the composition of development aid – in 2017, by far the largest
share of World Bank lending to African countries was allocated to transport infrastructure projects
(The World Bank, 2017). There appears to be a clear consensus that Africa needs more roads.

In this paper, I investigate a neglected, yet powerful additional drag on Africa’s transport system.
I don’t ask if the continent has too few roads, but rather analyse whether the current infrastructure is
in the wrong place. Do Africa’s roads connect the right areas to promote trade? How would a social
planner design a perfect transport network which optimises welfare in a given country? And what
can colonial history tell us about why some countries are far behind their hypothetical optimum?

I derive the unique optimal trade network for every country in Africa. Using data from satellites
and online routing services, I first construct an interconnected economic topography of more than
10,000 square grid cells covering the entire continent. I then employ a simple network trade model
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to simulate trade flows through more than 70,000 links spanning all of Africa. In a second step, I
use a variant of a recently established framework by Fajgelbaum and Schaal (2020) to optimise over
the space of networks and find the optimally redesigned transport system given the underlying
economic fundamentals for every African country. An intuitive thought experiment demonstrates
this process: suppose the social planner were to observe the spatial distribution of roads, people, and
economic activity in a given country before being allowed to lift all roads from their current location,
freely shuffle them around, and then reorganise them in the most efficient way for mutual trade. The
planner is not allowed to build completely new roads, but is only allowed to move infrastructure
from one part of the country to another. In this exercise, she takes into account local incentives for
trade between all sets of neighbours on a complex network graph, regional differences in trade costs
caused by geographical and network characteristics, and heterogeneous costs to constructing new
roads depending on the underlying terrain.

I then compare these optimal networks to the current system. I argue that the degree to which the
optimum differs from the status quo can be interpreted as an intuitive measure for the inefficiency of
a country’s current road network. I show that potential welfare gains from reshuffling roads would
improve overall welfare on the continent by about 1.3%. I use my simulations to identify Somalia
and Sudan as the countries with the most inefficient transport network in Africa. I also compute
returns to a hypothetical large-scale expansion of the trade network on the continent, amounting to
additional investments worth 10% of Africa’s current road stock. I find a return on investment of
around 8% in welfare terms to such a program. Trade networks in the US and China, by comparison,
are much closer to their hypothetical optimum.

On the regional level, this scenario creates winners and losers. The model identifies some areas
as having too many roads and decides to put them to better use somewhere else. These areas were
inefficiently overendowed with transportation infrastructure before the reshuffling exercise. Other
regions, however, did not have enough infrastructure given their relative position in the network
and are now awarded additional roads by the social planner. I identify these areas as discriminated
against by the current transportation network design. By comparing welfare levels before and after
the hypothetical intervention, I create a novel dataset of local infrastructure discrimination for more
than 10,000 cells covering the entire African continent.

Why are some regions systematically cut off from the benefits of efficient trade? I investigate the
long-run effects of large infrastructure investments from the colonial area. Similarly to Jedwab and
Moradi (2016), I find a persistent impact of railway lines constructed by the colonial powers over
a century ago. Plausibly exogeneous variation in the number of kilometres crossing a given area
significantly skews the current trade network towards a suboptimal state today. Even though many
of the railway lines have fallen into disarray since independence, regions close to colonial railroads
still have too much road infrastructure given their relative position in the network. In contrast,
railway lines that were planned, but by historical accident never built, do not predict any significant
departure from the optimal spatial distribution.

Using historical roads data from Kenya, I investigate mechanisms for this spatial persistence and
find that policymakers often failed to close the infrastructure imbalances left behind by the colonial
powers (Burgess et al., 2015). In times of non-democracy, Kenyan road development projects did not
go to the areas most in need, but rather to places sharing ethnicity with the leader at the time.

The main caveat to my findings is that my spatial model does not feature a time dimension. My
exercise identifies the optimally reallocated or expanded network at the current point in time, and
hence might mis-characterise forward-looking infrastructure investments into high-potential areas
as inefficient.
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My study contributes to several strands of literature. I analyse the lasting impact of transport
revolutions and thereby add to the large body of work devoted to identifying the economic returns
to improving infrastructure systems (Donaldson and Hornbeck, 2016; Swisher, 2017; Donaldson,
2018; Burgess and Donaldson, 2012; Asher and Novosad, 2020; Faber, 2014; Baum-Snow et al., 2017).
In contrast to these studies, I do not analyse the impact of existing transport revolutions, but rather
measure how much a hypothetical first-best transport system would improve welfare (see also San-
tamaria, 2022; Kreindler et al., 2023).

Methodologically, I optimise over the space of networks in order to find the globally efficient
transport system, harnessing the framework by Fajgelbaum and Schaal (2020) (see also Bernot et al.,
2009; Galichon, 2016). Previous studies in economics relied on stepwise heuristics to eliminate sub-
optimal counterfactual networks but did not include a derivation of the globally optimal network
design (Burgess et al., 2015; Alder, 2022).

I also contribute to the literature employing regional trade models to explain subnational welfare
disparities caused by internal transport geography in a development context (Atkin and Donaldson,
2015; Storeygard, 2016; Coşar and Fajgelbaum, 2016; Fiorini et al., 2021; Gorton and Ianchovichina,
2022) as well as the literature of optimal spatial policies (Fajgelbaum and Gaubert, 2020).

In my empirical inquiry, I add to the literature examining long-run persistence of colonial trans-
portation revolutions in Africa (Jedwab and Moradi, 2016; Jedwab et al., 2017), as well as add to our
understanding of how regional and ethnic favouritism can explain such persistence (Burgess et al.,
2015; Michalopoulos and Papaioannou, 2013, 2014, 2016; De Luca et al., 2018; Hodler and Raschky,
2014).

2 A model of optimal transport networks

In this paper, I derive the optimal goods trade network for every country in Africa. To be able to
maximise over the space of networks, I harness a version of the framework proposed by Fajgelbaum
and Schaal (2020), which I outline below. My main departures from their framework are the way I
calibrate the model to be amenable to the African continent, which I explain in the section 3.

Geography Following the set-up and notation of Fajgelbaum and Schaal (2020), I consider a set of
locations I . Each location i is endowed with a fixed total amount of (rival) non-tradeables Hi, such
as housing, and a number of homogeneous consumers Li. Each consumer has an identical set of
preferences characterised by

u = ca
i h1�a

i

where hi = Hi/Li denotes per capita housing. ci = Ci/Li denotes per capita consumption of a CES
aggregate over N goods:

Ci =

✓ N

Â
n=1

(Cn
i )

s�1
s

◆ s
s�1

where s denotes the standard elasticity of substitution and Cn
i denotes the consumption of good n

in location i.
Every location produces one variety n, yet multiple locations might produce the same variety. I

assume a linear production function with labor as the only input:

Yn
i = zn

i Li
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where zn
i is a location-specific productivity term for good n. In the calibration outlined below, I

generally assume that only a few locations produce their own unique specialised good, while the
majority of locations produce a homogeneous “agricultural good”.

Network topography Locations represent nodes of an undirected network graph. Each location
i is directly connected to a set of neighbours N(i). I consider locations to be arranged on a two-
dimensional square lattice where each node is connected to its eight surrounding nodes to the north,
north-east, and so on.

All goods except housing can be traded within the network. Let Qn
i,k denote the total flow of good

n travelling between nodes i and k 2 N(i). While goods can only be traded between neighbouring
nodes, nothing prevents them from travelling long distances through the network by passing mul-
tiple locations after each other. Sending goods from location i to location k 2 N(i) incurs trade
costs, which are modelled in the canonical iceberg form. I follow Fajgelbaum and Schaal and model
iceberg trade costs for trading good n between neighbouring locations i and k as

tn
i,k(Q

n
i,k, Ii,k) = dt

i,k
(Qn

i,k)
b

Ig
i,k

(1)

where Ii,k is defined as the level of infrastructure on the edge between nodes i and k. More infras-
tructure on a given link decreases the cost of trading between them. Trade costs also depend on Qn

i,k,
the total flow of goods on the link. Higher existing trade volumes on a given edge make sending
an additional good more costly, a dynamic Fajgelbaum and Schaal refer to as congestion external-
ity.1 The social planner realises this and takes congestion into account when determining optimal
trade flows. dt

i,k is a scaling parameter allowing trade costs to be flexibly adjusted based on inherent
characteristics of an i, k location pair, such as distance.

In equilibrium, each location cannot consume and export more than it produced and imported.
More formally

Cn
i + Â

k2N(i)
Qn

i,k(1 + tn
i,k(Q

n
i,k, Ii,k))  Yn

i + Â
j2N(i)

Qn
j,i (2)

must hold for every n and i.
I follow the contribution of the Fajgelbaum and Schaal (2020) framework and proceed to en-

dogenise infrastructure provision Ii,k in order to facilitate optimal trade flows. Analytically, this
problem nests the static trade flow exercise outlined above. The social planner chooses an infras-
tructure network, and given the network proceeds to compute optimal trade flows subject to (2). To
make the problem more interesting, I introduce a constraint on infrastructure. This is specified in
fairly straightforward manner as the Network Building Constraint

Â
i

Â
k2N(i)

dI
i,k Ii,k  K (3)

where dI
i,k denotes the cost of building infrastructure on the edge between nodes i and k. Total

spending on infrastructure is constrained by an exogeneous value K, representing the total budget
of infrastructure spending available to the social planner.

1There are multiple ways to conceivably micro-found such an externality. For example, in traffic or queueing theory,
inverse speed is a convex function of volume processed (see eg. Brancaccio et al., 2024, for a recent treatment). On the other
hand, indivisibilities in transport infrastructure, such as a fixed container size, could also lead to opposite effects (see eg.
Kreindler et al., 2023). A theory of optimal trade networks in the presence of such indivisibilities represents an exciting
avenue for future work.
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Planner’s problem and equilibrium I consider two versions of spatial equilibrium in my model:
with and without labor mobility. In the case without labor mobility, the social planner observes ge-
ography, population, endowments, technologies, and preferences and solves solves for the optimal
transport network which induces trade flows leading to welfare-maximising consumption levels
while respecting the Network Building Constraint (3). In the case with mobile labor, the planner addi-
tionally allows for free migration between locations until utility levels are perfectly equalised across
space. The full planner’s problem can hence be stated as

maxn�
Cn

i ,{Qn
i,k}k2N(i)

 
n

,

ci ,{Ii,k}k2N(i) ,Li

o

i

Â
i

Liu(ci, hi)

subject to Lici 
✓ N

Â
n=1

(Cn
i )

s�1
s

◆ s
s�1

, 8i 2 I CES CONSUMPTION

Cn
i + Â

k2N(i)
Qn

i,k(1 + tn
i,k(Q

n
i,k, Ii,k))

 zn
i Li + Â

j2N(i)
Qn

j,i, 8i 2 I , n 2 N BALANCED
FLOWS CONSTRAINT

Â
i

Â
k2N(i)

dI
i,k Ii,k  K NETWORK BUILDING

CONSTRAINT

Ii,k = Ik,i, 8i 2 I , k 2 N(i) INFRASTRUCTURE
SYMMETRY

u(ci, hi) � u 8i 2 I . MOBILE LABOR

Cn
i , ci, Qn

i,k, Li � 0, Iu
i,k � Ii,k � I`i,k, 8i 2 I , n 2 N , k 2 N(i). NON-NEGATIVITY2

In the case of mobile labor, this setup corresponds to standard notions of spatial or urban equilib-
rium, in which agents move to wherever their utility is highest, until there are no differentials left to
exploit (Roback, 1982). The case with immobile labor is less standard in spatial models. There are
many possible microfoundations rationalising utility differences across space as equilibrium out-
comes. There might be hidden migration costs large enough to fully offset any gains from moving
(Allen et al., 2019; Porcher, 2021), borrowing constraints preventing otherwise beneficial moves (Bilal
and Rossi-Hansberg, 2021), or idiosyncratic location-preference shocks powerful enough to sustain
utility differentials (Gaubert et al., 2020; Fajgelbaum and Gaubert, 2020). In this case, the social
planner can identify depressed areas and implement optimal networks as a place based policy.

While optimising over the space of networks might appear daunting, Fajgelbaum and Schaal
(2020) provide conditions under which deriving the unique spatial optimum is both ensured and
feasible. Instead of solving for every single infrastructure link, I follow the authors and recast the
problem in its dual representation, which greatly reduces the dimensionality of the problem (see
appendix section B for technical details).

Optimal reallocation and expansion Similar to Fajgelbaum and Schaal (2020), I choose two differ-
ent values for the total infrastructure budget available to the social planner K, aimed at identifying
two different sources of spatial improvements to the trade network.

In the first exercise, which I call optimal reallocation, I set K equal to the cost of the current network,

2 I`i,k represents a lower-bound for infrastructure. As will be discussed in chapter 3, I calibrate the reallocation version of
the model with I`i,k = 4, and the expansion version of the model with I`i,k = Ic

i,k . Also note that in the model without mobile
labor, the planner cannot optimise over the vector Li by definition. In this case, I also drop the utility equalisation condition
u(ci , hi) � u 8i 2 I .
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ie. K = Âi Âk2N(i) dI
i,k Ic

i,k, where Ic
i,k is the current level of infrastructure on a link. I observe the

current network, infer how much it must have cost to build it, and bind total infrastructure spending
by that amount. In this exercise, the planner is otherwise free to choose her optimal level of Ii,k on
each link, as long as it complies with the budget constraint. In essence, this scenario amounts to a
reallocation exercise: the planner gets to redesign the entire network, freely lifting infrastructure off
the ground, shuffling it around, and reallocating it in an optimal way.

I argue that the amount of welfare an economy can gain from this reallocation exercise serves
as an intuitive measure for how inefficient the current infrastructure network was to begin with.
If the current network already connects the most important trade routes with fast roads without
much congestion, then welfare gains from reallocating roads optimally will be small. On the other
hand, if the infrastructure network connects only secondary locations while leaving major trade
hubs unconnected, then an optimal reallocation could lead to large welfare benefits.

This reallocation exercise also comes with two clear drawbacks. For one, many roads in Africa
were built decades ago and financed first by colonial powers and later by international organisa-
tions. Hence, fixing K at the value of the current road network will likely overestimate the cost of
building the network at the time. Second, allowing the planner to lift roads off the ground and move
them seamlessly throughout the country is practically infeasible. In reality, demolishing a road in
one part of the country does not free up resources to build a road of equal quality somewhere else
(even worse, there are likely labor, capital, and political costs associated with this). I hence see this
reallocation scenario as a hypothetical exercise aimed at quantifying which level of welfare could
be achieved if the same raw quantity of roads were allocated optimally. To address these draw-
backs, I also conduct a second exercise which I call optimal expansion. In this scenario, K is set to
10% more than the current level of infrastructure (K = 1.1⇥ Âi Âk2N(i) dI

i,k Ic
i,k), while the current net-

work serves as a lower bound to infrastructure investment I`i,k = Ii,k. In other words, this simulation
allows the planner to make additional investments worth 10% of the current road stock in the coun-
try, but she cannot reallocate existing infrastructure from one place to the next. This is an arguably
much more policy-relevant exercise in the spirit of a “big push” infrastructure building campaign
(Murphy et al., 1989; Kline and Moretti, 2014; Buera et al., 2023), and aims to quantify how high the
returns to optimally placed additional infrastructure investments are.

3 Calibration of current and optimal trade network designs

To calibrate the topography of economic activity and trade in all African countries, I construct a
novel network representation covering the entire continent using a variety of data sources.

3.1 Network calibration

I first divide the entire continent into grid cells of 0.5 degrees latitude by 0.5 degrees longitude
(roughly 55 by 55 kilometres at the equator). For all of Africa, this amounts to 10,167 cells. I calibrate
population Li with data on 2015 population totals from the Gridded Population of the World dataset
(2016).3 To proxy for heterogeneity in economic activity over space, I rely on the established practise

3This NASA-funded project gathers data from hundreds of local census bureaus and statistical agencies in order to con-
struct a consistent high-resolution spatial dataset of the world’s population. When a datasource only reports population totals
for large, higher-level administrative districts, the dataset smoothes population uniformly over the entire area. GPW does
not employ any auxiliary data sources – like satellite data – to weight-adjust population totals over space (Doxsey-Whitfield
et al., 2015). Africa is the continent with the coarsest resolution of administrative input data. However, the average coverage
of (57KM)2 neatly matches the grid cell resolution of my study. On average, a cell is home to 110,000 people (median 25,000).
The most populous cell contains Cairo and inhabits almost 18 million people. 212 cells are uninhabited.
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Figure 1: Road networks for different countries as scanned off OSM

(a) Burkina Faso
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Burkina−Faso (b) DRC
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Democratic−Republic−of−the−Congo

Road networks as scanned off Open Street Map (OSM). Blue lines represent routes from each grid cell centroid to each of its eight
surrounding neighbours. These routes may include a portion walked by foot in order to get to the nearest street. Grey lines are connections
abroad. Connections in which walking the entire distance is faster are printed as thin lines. Data scanned in July 2023.

of using satellite imagery of light intensity at night (Henderson et al., 2012). Data on 2010 night
luminosity come from Henderson et al. (2018) and are also aggregated onto my study’s 0.5 ⇥ 0.5
degree grid resolution to form output Yi, and together with population, an implied productivity zi.

Infrastructure. To quantify the degree to which network nodes are connected to each other, I make
use of the open source routing service OPEN STREET MAP (OSM). The OSM routing algorithm is
specified for cars and takes into account differential speeds attainable on different types of roads.
For every centroid location, I scan OSM for the optimal route to each of their respective eight sur-
rounding neighbours (or less for coastal grid cells). For all of the resulting almost 75,000 routes, I
gather distance travelled, average speed, and step-by-step coordinates of the travel path.4,5 For some
particularly remote areas, the nearest street is very far away, such that the car routing provided by
OSM is not sensible. To counter these cases, I also calculate the outside option of walking the entire
link in a straight line at 4 km/h and replace OSM’s route with walking in cases where this is faster.

My study is concerned with optimally reallocated or expanded domestic road networks for each
country in Africa. I hence divide the entire grid along national borders. Reoptimising roads solely
within a country’s borders comes at the risk of undervaluing roads built primarily for international
trade. A highway connecting to an important trading post or port just beyond a country’s borders
might look inefficient to a social planner who is only given national data. I hence create a buffer of
120km around each country and allow the social planner to take these border regions into account
when computing the optimal network.

Figure 1 presents the resulting road networks for two countries and their border buffer (in grey).
Figure 1a displays every OSM connection for Burkina Faso, which appears overall fairly well con-
nected. Connections in which walking were the preferred alternative are displayed in thin straight
lines and fairly rare. Figure 1b presents the case for the DRC, which displays a clear lack of infras-
tructure in the middle of the country.

4Scans of OSM were conducted in July 2023. The service does not allow a retrospective scan over past road databases, so
a time difference between lights (2010), population (2015), and roads (2023) can not be overcome.

5If either start or destination location do not directly fall onto a street, the optimal route jumps to the nearest road and goes
from there. To take this into account, I add a walking distance to the travel path. Agents are assumed to walk in straight lines
to the nearest street at a fixed speed of 4 km/h. They then take the car and drive the route with average speed as specified by
OSM, before they potentially have to walk the last stretch again to their exact centroid destination.
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I use the average attainable speed between locations according to the OSM algorithm as a proxy
for the quality of current infrastructure on the edge between them. If two locations are linked by a
faster connection, I assume this to be the result of higher infrastructure Ii,k on this edge. I hence set
Ii,k = Average Speedi,k. This measure is naturally bound from below at 4 km/h, as walking is always
available as a backup. Empirically, average speeds range between 6 km/h (Mauritania, where most
routes go through the desert and have to be covered by walking) and 33 km/h (Swaziland).

Relying on the open source community of OSM does come with some drawbacks. The most
pressing concern is that data on the position and quality of roads are user-generated and hence sub-
ject to reporting bias. Richer areas may appear to be equipped with more roads if local residents
have the time and necessary access to a computer to enter their neighbourhoods into the database.
While this is certainly troubling, I believe this bias to be much more important on finer resolutions
than the operating one in this study. Start and destination of the elicited routes are on average more
than 55 kilometres apart and travel will hence take place mostly on larger roads and national high-
ways. It is unlikely that these major streets are systematically underreported in OSM, the primary
open source routing platform on the internet. To nevertheless get a sense of the magnitude of this
potential bias, for a random 1% subset of connections I additionally scrape GOOGLE MAPS (GM).
While GM might in principle also suffer from the above bias, its status as the biggest commercial
provider of routing services in the world makes it a useful benchmark. Figure A.1 in the appendix
compares the two providers. As can be seen in panel (a), the two services generally agree on speed
magnitudes, with GM offering slightly faster connections. Panel (b) reveals that this difference is
particularly pronounced in low population areas, confirming the above suspicions – connections
between the lowest density areas are about 50% faster in GM than in OSM, potentially due to GM
knowing backroads that haven’t been user-reported to OSM. Above a grid cell population of about
50,000, the difference between both providers becomes statistically indistinguishable. In my empir-
ical investigation below, I try to account for this bias by controlling for grid cell population levels.

Trade costs. To parameterise iceberg trade costs defined in equation (1), I use a variety of sources.
As documented in more detail in Appendix section C, I leverage estimates of the costs of road delays
to African truckers by Teravaninthorn and Raballand (2009) to set the infrastructure elasticity g to
0.946. I also use data on the cost of traffic congestion by Wang et al. (2011) to calibrate the congestion
elasticity to b = 1.1774.

To calibrate the inherent component of trade costs dt
i,k, I incorporate existing evidence on the im-

pact of distance on price dispersion in Africa. Specifically, I follow Atkin and Donaldson (2015), who
posit that price differences of the same good between locations i, k are a composite of transport costs
and markups charged by intermediaries with market power. Market power is a first-order determi-
nant of trade costs in Africa, where entry barriers and burdensome regulation enable the formation
of large cartels operating along the major transport corridors of the continent and distorting prices
(Teravaninthorn and Raballand, 2009). In light of this, I transform the basic Fajgelbaum and Schaal
(2020) framework to be able to incorporate the impacts of market power on prices across space.

In particular, Atkin and Donaldson (2015) estimate that markups charged by intermediaries de-
cline with distance, a counter-intuitive fact explained by consumers in remote areas tending to be
poorer and hence moving along a more elastic part of their demand curve. At the same time, trans-
port costs intuitively increase with distance travelled. As the Fajgelbaum and Schaal framework I
build includes additional, endogeneous components of travel costs (namely infrastructure and en-
dogeneous congestion), I treat the Atkin and Donaldson estimates as equilibrium outcomes and run
a fixed-point routine which induces their reduced-form relationship in equilibrium. As explained in

8



more detail in Appendix C, I arrive at the calibration dt
i,k = 0.1159 ⇥ ln(Distance in milesi,k) for the

trade cost elasticity to distance travelled.6

dI
i,k from equation (3) denotes the constant cost of increasing the average speed on a given link

by one. I follow Fajgelbaum and Schaal who in turn make use of a recent study by Collier et al.
(2015), which estimates infrastructure building costs in developing countries. Readily applying their
specification, I calculate ln(dI

i,k) = 0.12⇥ ln(Ruggednessi,k)+ ln(Distancei,k) as the cost of increasing
infrastructure Ii,k on the link between i and k.7

Varieties. To build incentives for trade, I introduce N = 6 different varieties. The four most pop-
ulous grid cells of a given country are assumed to be producing their own variety, which creates
incentives for trade between major cities. Another “international” variety is supplied by the three
most populous grid cells within each country’s border buffer. This ensures incentives for interna-
tional trade beyond the border. I also collect data from Lloyd’s List on grid cells which are home to a
major international port.8 Every port location (within a country’s borders or within its international
buffer) not covered by the previous varieties is assumed to also produce the “international” variety.
Lastly, every other location is assumed to produce a sixth, “agricultural” variety.

Finally, as explained in more detail in Appendix section C, I calibrate the budget share of trade-
ables as a = 0.7 following Porteous (2022) who use data on consumption spending from Angola and
Nigeria, and the trade elasticity of substitution as s = 5 following Atkin and Donaldson (2022).

Local non-tradeables. Local non-tradeables such as housing in each location are unobserved and
so need to be calibrated. I distinguish between the cases of mobile and immobile labor. In the case
of immobile labor, housing levels make no difference (other than monotonically shifting residents’
utility levels) and so I set Hi = Li in each location.

In the case of mobile labor, however, local non-tradeable stocks codetermine spatial equilibrium.
In this case, I invert the model to find the vector of housing H that rationalises the observed distri-
bution of population as spatial equilibrium, given the current road network Ic. Column 5 of Table
A.1 in the Appendix correlates the level of (per-capita) housing with a host of geographic measures
and finds few significant correlations. Only the amount of night lights (ie. production) is nega-
tively associated with local amenities. This could be because such places have more direct access to
consumption, and to restore spatial equilibrium, these regions have lower housing per capita.

Local non-tradeables also introduce a notion of congestion externalities within locations, which are
distinct from the previously introduced trade-congestion on edges. Since the total stock of housing
is fixed and rival, migration to a given region (eg. induced by an improved road network) leads to
competition for those scarce resources (Redding, 2016). The social planner takes this into account,
and the population distribution induced by an optimal network with mobile labor will balance those
disagglomeration forces with local network improvements.

6Allowing both transport costs t as well as markups µ to vary with distance di,k , the authors write: Pk � Pi = tj,k(di,k) +

µi,k(di,k) = bx log(di,k) and estimate bx = 0.0251. This corresponds to equation (2) of Atkin and Donaldson (2015), who have
barcode-level data on identical goods for Ethiopia and Nigeria. They estimate bx = 0.0248 for Ethiopia and bx = 0.0254 for
Nigeria. As explained in more detail in appendix section C, my fixed-point routine translates these parameters into 0.2258
for Ethiopia and 0.006 for Nigeria. I take the average of those two.

7Distancei,k denotes the road distance travelled between nodes and enters positively, implying that longer roads are
costlier to develop as every single road kilometre will have to be improved. The term Ruggednessi,k,c denotes the average
ruggedness between grid cells i and k and enters positively, highlighting the additional expenses accompanied with building
on uneven terrain. Data on local ruggedness come from Henderson et al. (2018) and is described in more detail with other
geographical covariates below.

8I use the open-access portal at https://directories.lloydslist.com/port and hand-code the locations of the 90 biggest ports
in Africa. Figure A.6a prints the resulting locations.
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3.2 Trade network optimisation

For each country, I conduct four simulations: optimal reallocation and expansion, with and without
labor mobility. As mentioned above, the reallocation scenario binds total infrastructure spending
K at the level of the current road network, with the social planner free to reshuffle roads within the
country in order to improve connections as she chooses. This reallocation exercise does not seek
to identify where to place the optimal next investment, but rather represents a purely hypothetical
scenario in which every roads can be freely reshuffled.9

For the expansion scenario, the planner treats the current network as fixed, but gets to make
new investments worth 10% of the current infrastructure stock. This scenario is closer to the policy-
relevant question of identifying the highest-return investments. While both exercises aim to quantify
the extend of infrastructure misallocation in a country, the expansion scenario is more directly ad-
dressing the “too few roads” hypothesis, while the reallocation scenario speaks to claim of roads
being “in the wrong place”.

When conducting these optimisations, I fix infrastructure in the international buffer around each
country at their current level. While the planner takes into account the economic geography of a
country and its surroundings, she can only reallocate infrastructure within the country in question.10

I also impose a maximum speed of 120 km/h on any given link.11

For a small number of links (less that 0.1% of all connections), the OSM algorithm is unable to
find any available route between locations. This is mostly due to some obvious geographical barrier,
like an island separated from the mainland without a bridge, or a non-navigable jungle or mountain
range. In these rare cases, I treat these locations as if they were not connected at all and also don’t
allow the reallocation scenario to connect these previously separated regions. This is meant to forbid
the social planner from building infrastructure on obviously impassable terrain.

Should we generally expect the social planner to see the need to redistribute infrastructure across
space? An influential series of papers argues that in standard spatial equilibrium models, the ob-
served market equilibrium is efficient even in the presence of agglomeration externalities, and hence
any reallocation of productive resources (eg. through place-based policy or local hiring subsidies)
is zero-sum (Glaeser and Gottlieb, 2008; Kline and Moretti, 2013, 2014). However, the problem of
allocating road infrastructure is different from the problem studied in those papers in two funda-
mental aspects. First, infrastructure is generally not competitively provided (while a competitive
labor market will induce workers to relocate to the place where their expected value is highest,
units of infrastructure do not freely move to the link where they can be most impactful). As such,
infrastructure investments (which are notoriously sticky) might be the result of past optimisation
problems, regional favouritism, or other imperfect spatial policies. Second, my model features con-

9Note that equation (3) only fixes Âi Âk2N(i) dI
i,k Ii,k = K. Hence, not the overall sum of infrastructure is fixed, but more

precisely the overall cost of infrastructure. This still allows the social planner to take away one unit of infrastructure on a
very expensive (high dI

i,k) link and exchange it for much more than one unit on a cheaper (low dI
i,k) link.

10There are two reasons why I conduct the simulation procedure within countries and not over the entire African continent.
One is computational; the requirements for numerically solving the model increase quadratically in the number of locations I .
The largest country in Africa (Algeria) is made up of almost 900 locations and already strains computing power quite heavily.
Simulating all of Africa’s 10,000+ locations at once is then almost unattainable with available technology. The second reason
is interpretational; while lifting a country’s roads from the ground and flexibly reshuffling them across the nation is already
a fictitious scenario, it still operates within a government transport authority’s locus of control. Regions disadvantaged by
their own government can reasonably be considered discriminated against. This is less the case if one were to optimise over
the entire continent. Without a central planning body for all of Africa, it is hard to interpret why a road in e.g. Tunisia should
rather be moved into Namibia.

11In the reallocation exercise, I also bind the social planner’s set of permissible roads from below at 4 km/h. This is
motivated by the assumption at the beginning that walking straight lines at this speed is an outside option and always
available to any traveler. As discussed above, in the expansion exercise, the current observed network Ic serves as the lower
bound, as only new roads can be constructed in this scenario.
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gestion externalities in trade costs, so that even in the case with mobile labor, people endogeneously
form a spatial population distribution that might put heavy strain on the network. As Fajgelbaum
and Gaubert (2020) show, the presence of congestion opens the door to welfare-improving transfers,
such as the infrastructure reallocation considered here. With this in mind, it should not be surprising
if the reallocation scenario uncovers substantial hypothetical welfare gains.

I conduct the reallocation and expansion scenarios for every African country separately.12 Opti-
misations are performed using the optimisation toolkit provided by Fajgelbaum and Schaal (2020).
Figure 2 visualises this reallocation exercise for the two countries from above. Subfigure 2a dis-
plays the discretised network representation of Burkina Faso. The edges to this network are printed
almost evenly thick, implying that infrastructure is fairly evenly distributed across the country. Sub-
figure 2b then displays the country after the network reshuffling exercise with immobile labor. Three
patterns stand out. First, the social planner sees a clear need to connect the populous areas in the
center of the country with each other. For that, the social planner is willing to salvage some of the
apparently less important infrastructure in the north of the country. Second, there still is a benefit to
having a few trails connecting the center with a regional hub in the south-west producing it’s own
variety. Third, nodes are printed in a colour scale corresponding to individual welfare gains and
losses for each location. As can be seen from first-glance, most southern regions (brighter colors)
stand to gain from this scenario, while the big cities on average seem to lose (darker colors). Subfig-
ure 2c prints results from the optimal expansion scenario. After optimally investing a budget worth
10% of its current infrastructure stock, the country’s network gets improved along similar edges as
under reallocation.

The simulation for the Democratic Republic of Congo in Figures 2d – 2f are made under the
assumption of mobile labor. The social planner sees a need to better connect the center of the country
to its surroundings and the populous border regions. This is in line with the common perception
of DRC’s periphery being notoriously poorly connected to the centers of power and commerce. In
these Figures, nodes are colored based on their population changes compared to baseline (as welfare
changes by definition are the same in all locations). Large parts in the southern center of the country
gain population in this scenario, while many border regions lose out.

4 A measure of spatial transport network inefficiency

After successfully reshuffling a country’s transport network, national welfare will by construction
(weakly) increase. Such welfare gains are mainly caused by enabling mutual benefits from trade
through connecting the right locations. In the case of mobile labor, there is a potentially added effect
due to increased productivity, as better transportation networks might induce people to migrate
to more productive locations. With immobile labor, overall production is fixed by construction.
Nevertheless, welfare gains from reallocation are not negligible. Burkina Faso, for instance, stands
to gain 3.4% from optimal reallocation and 2.5% from optimal expansion under immobile labor.
Under mobile labor, these gains would be even higher (3.6% and 2.8%).

Figure 3b reports hypothetical welfare gains for all African countries under immobile labor. Bars
represent gains from optimal reallocation, crossed lines print gains from optimal expansion. Some
nations like South Africa (0.5% welfare gains from reallocation) or Egypt (0.6%) perform relatively
well and don’t leave much room for improvement through reallocation. Many countries are leaving
much more on the table, like Somalia (6.6%) or Madagascar (6.3%). South Sudan has the third-most

12Six small countries (Cape Verde, Comoros, The Gambia, Mauritius, São Tomé and Prı́ncipe, and Reunion) are too small
to form a sensible network as they only show up as a single location in the dataset and are henceforth no longer considered.
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Figure 2: Reallocation scenario for different countries

(a) Burkina Faso ex-ante
Burkina−Faso

(b) Reallocation (immobile labor)
Burkina−Faso

2.281
1.177
1.077
1.024
1.002
0.986
0.624

(c) 10% expansion (immobile labor)
Burkina−Faso

(d) DRC ex-anteDemocratic−Republic−of−the−Congo (e) Reallocation (mobile labor)Democratic−Republic−of−the−Congo

14.928
1.124
1.071
1.039
1.015
0.994
0.477

(f) 10% expansion (mobile labor)Democratic−Republic−of−the−Congo

Results from optimally reshuffling roads in three African countries. In each network graph, every node represents a grid cell centroid
location with radius proportional to the size of its local population. Edges are drawn thicker depending on their allotted infrastructure
Ii,k. In the optimal networks on the right, nodes are coloured based on their relative welfare gains and losses (population gains and losses
for the case with mobile labor), with more light areas gaining more. Color scheme is the same as in Figure 3a and 3c.

inefficient network and represents a constructive case. Its citizens stand to gain 6% of overall welfare
if just their roads were better placed. This may come as no surprise, as the world’s newest country
has largely inherited a road network that was not conceived to sustain an independent nation, but
rather connect it to its former capital up north. For the entire continent, optimal reallocation of
national road systems under immobile labor would improve overall welfare by 1.3%.

Results are similar for optimal expansion. Eyeballing Figure 3b confirms that countries that
would gain a lot from optimal reallocation would also gain from an ideally placed new investment.
For all of Africa, welfare gains from an optimal infrastructure program equivalent to 10% of its
current road system would yield 0.8% of welfare, implying a return on investment of around 8%.
Comparing this to the 1.3% welfare gains from optimal reallocation, it also implies that the drag on
welfare through spatial misallocation is even bigger than what could be achieved under an optimally
targeted, large-scale infrastructure program worth 10% of Africa’s total road stock. According to my
model, spatial inefficiencies in Africa’s trade network are hence a major source of welfare losses on
the continent.

Figure 3d repeats the same exercise in the case of mobile labor and finds on average 2.5-3.0⇥
larger welfare gains than with no labor mobility. Sudan would gain over 10% of welfare from re-
allocation (6% from expansion), all of Africa combined stands to gain 3.8% (2.1%). Scenarios with
mobile and immobile labor also produce roughly similar rankings across countries.

To gain a sense of how African countries compare to the rest of the world, I also compute my
measure for four non-African countries: China, Japan, Germany, and the US (printed in grey). In the
case of immobile labor, these countries all are found to have an order of magnitude more efficient
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Figure 3: Africa by network inefficiency

(a) Immobile labor: Limm across the continent
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(b) Immobile labor: welfare gains by country
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(c) Mobile labor: Lmob across the continent

0.869

0.993

1.013

1.036

1.065

1.117

1.321

(d) Mobile labor: welfare gains by country

Hypothetical welfare gain
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Discrimination index at the grid cell level (a) and welfare gain under the optimal reallocation counterfactual for each country (b). Country
gains are computed by comparing the population-weighted mean of the discrimination index of all cells in a country. (c-d) repeat this
exercise in the case with mobile labor. Grid cells with zero population are printed blank.

road networks than most African countries. The United States, for example, only stands to gain
between 0.02-0.03% from optimal expansion and reallocation under immobile labor. Estimates with
mobile labor are slightly bigger, yet all four non-African countries still consistently rank among the
countries with the most efficient networks.13

Forgone welfare gains can be conceived as an intuitive measure for overall network inefficiency.
While each country only stands to gain overall welfare from the reallocation procedure, individual

13I calibrate these four non-African countries with the same data sources described above. Computations for large China
and the US are performed on a 4⇥ coarser sample (1⇥1 degree grid cells) for computational reasons.
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locations might very well lose in the process. Intuitively, some regions might be equipped with far
too many good roads such that the social planner takes these roads away to use someplace else.
Comparing each grid cell’s welfare before and after the major reshuffling or expansion can help to
identify regions which are currently over or underprovided for. More formally, I define

Limm,i =
Welfare under the optimal infrastructurei
Welfare under the current infrastructurei

(5)

as the Local Infrastructure Discrimination Index with immobile labor for grid cell i. Areas with high
Limm scores would be gaining under the optimal reallocation scenario and are hence underprovided
for in the network’s current state. A low score of Limm on the other hand, implies that a region is
too well off given its position in the network today and hence should be stripped off some of its
infrastructure to increase overall welfare.

Figure 3a displays the spatial distribution of Limm over all 10,000+ grid cells of the entire con-
tinent. The darker a grid cell’s shade, the more it is advantaged by the inefficiencies of the current
network. When interpreting this map, note that grid cells are undergoing the reshuffling scenario
solely within their respective country (while taking into account respective international buffer re-
gions). National borders hence play a role and can at times even clearly be inferred from the printed
map. Keeping this in mind, the map reveals substantial spatial variation in the index across the
African continent. The luckiest region stands to loose almost 70% of total welfare if the fictitious
social planner intervened and reshuffled roads away from it. On the other extreme of the spectrum,
the residents of the most discriminated grid cell are missing out on a welfare hike of almost 65%.

The definition of Limm naturally translates to the case of optimal expansion. I denote the ratio
of welfare before and after the expansion scenario by L10%

imm. Empirically, this measure ranges from
0.82 to 1.52. Note that it is possible for locations to lose welfare (ie. have L10%

imm < 1), even under
this scenario where only new routes are added. Figure A.2 in the Appendix presents an intuitive
example for how this might happen because of optimal re-routing of previous bottlenecks. Figure
A.3 in the Appendix, furthermore, shows that the social planner generally targets the same regions
with both expansion and reallocation scenarios. Limm and L10%

imm are highly correlated (r ⇡ 0.93)
across locations.

I extend my definition of local infrastructure discrimination to the case of mobile labor. Since
welfare gains are by definition equal for every location, I instead focus on population movements:

Lmob,i =
Population under the optimal infrastructurei
Population under the current infrastructurei

Intuitively, locations which would see large population increases in response to infrastructure re-
allocation are underprovided for by the current network. Figure 3c presents a map of Lmob. This
definition also extends naturally to the case of optimal expansion, L10%

mob.
Table A.1 in the appendix presents correlations of the various L indices with features of Africa’s

geography. My reallocation or expansion simulations do not systematically harm or benefit more
hot, agriculturally suitable, or rugged locations, or grid cells containing a national capital or with
higher prevalence for malaria. Without labor mobility, they also don’t differentially affect more
populous areas. With labor mobility, there is slight evidence (albeit small) of people leaving more
crowded areas. Across all simulations, more productive areas (proxied by night lights) are associated
with welfare and population drops, as the social planner finds it optimal to benefit economically less
productive regions. Places close to national borders or navigable rivers and lakes are hurt by this
exercise, as the model is not focusing on long-haul international or multi-modal trade.
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In interpreting Li, keep in mind that this is a measure of differences in welfare or population. It
need not be a direct mapping of changes in actual infrastructure provision. Figure A.4 in the Ap-
pendix plots the various L measures against other network measures. All L measures are strongly
related to a notion of market access (Donaldson and Hornbeck, 2016), highlighting that more effi-
cient networks are succeeding in connecting populous regions with each other.14 Furthermore, the
measures only barely (and often negatively) correlate with the change in actual roads in a given
location, reflecting the non-linear nature of optimal network design. A region might substantially
profit from the optimal policy, even though it is not directly granted additional roads.

Lastly, the measures I propose also need not correlate with existing infrastructure stocks. Optimal
networks might instead very well feature an unequal distribution of roads across space, if places
with lots of infrastructure represent important regional bottlenecks. Across my sample the various
measures of L do negatively vary with existing infrastructure levels (implying that the planner
does tend to help places with currently low levels of infrastructure), but counter examples in both
directions exist. My measure hence looks beyond the question of how many roads there are, and
instead asks whether roads are in the right place.

5 Persistent effects of colonial railways on Africa’s trade network

Why are some African roads not in the right place to promote beneficial trade? A key candidate
explanation is lasting impacts of infrastructure investments from colonial times. Between 1890 and
1960, British, French, Belgian, German, Italian, and Portuguese administrations undertook efforts to
permeate their colonies with more or less expansive railway networks (Jedwab and Moradi, 2016).

There were two main motivations for this: supporting extractive economies and ensuring mili-
tary domination (Jedwab et al., 2017). These colonial railroads have been found to have a persistent
impact on the spatial organisation of economic activity today. Jedwab and Moradi (2016) show
how urbanisation started to center around railway tracks in the decades following their construc-
tion. Even as most railway lines have fallen into disarray and road traffic has replaced trains as
the most important means of transportation, economic activity today still clusters in places close to
the former rail lines. Figure 4 confirms these findings on the grid cell level: in pink, it prints how
current levels of infrastructure are associated with distance to the colonial railroads.15 This hints at a
form of complementarity of railroads and roads: grid cells within 10 kilometres to the nearest colonial
railroad have about 0.5 standard deviations more infrastructure than those further away. There is
evidence of a declining gradient: the further a grid cell is away from colonial railroads, the less roads
it still has today. Figure 4 also gives suggestive evidence that there would be welfare gains from re-
structuring this imbalance: in blue, it prints coefficients of an equivalent regression, yet putting the
infrastructure discrimination index Limm on the left-hand side. As can be seen, the closer a grid cell
to a century-old railway line, the smaller the index, implying the social planner seeks to reallocate
infrastructure in a way to hurt these locations.

14This is defined as MAi = Âj(1 + tij)�szj Lj where tij corresponds to the cost of shipping a quantity of Q = 1 over the
network. I compute the change in MA from the static network before re-allocation to the optimal one post re-allocation.

15In particular, I run a regression on the grid-cell level i:

Ii = b0 +
100

Â
r=10

brDistance(r KM; (r � 10) KM)i + ei

where Ii is the (z-scored) total stock of infrastructure (average OSM speed) in a given place, and Distance(r KM; (r� 10) KM)i
is an indicator for a colonial railroad to pass within r to r � 10 kilometres of a grid cell centroid. The ommited category are
grid cells further than 100KM from the nearest colonial railroad. Data on the spatial outlay of colonial railroads come from
Jedwab and Moradi (2016).
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Figure 4: Distance to railroad and current infrastructure and L

Estimates of a regression of the type Yi = b0 + Â100
r=10 brDistance(r KM; (r � 10) KM)i + ei where br represents the effect of being

between r and (r � 10) kilometres away from either a realised colonial railroad (line and shaded area) or a placebo railroad (points and
vertical bars). Yi represents either current road infrastructure density of a cell i (in pink, this is the average of all Ii,j values across
neighbors j 2 N(i), or infrastructure discrimination Limm (in blue). Both dependent variables are z-scored before the analysis. 95%
confidence intervals plotted around coefficients.

Econometric strategy. I complement the above suggestive evidence with a more formal empirical
specification. In particular, I employ the various definitions of Li as dependent variable in a standard
OLS regression set-up. In the base specification, I estimate

L̃i,c = bRaili,c + Xi,cg + dc + ei,c (6)

for grid cell i in country c. Raili denotes different indicators of the presence of a colonial railroads
in a grid-cell, using data compiled by Jedwab and Moradi (2016). I also add information on colonial
roads in South Africa which I digitised myself using maps from Herranz-Loncán and Fourie (2017).
I compute the total number of kilometres of different colonial railroad classes crossing a grid cell, as
well as the distance of a cell’s centroid to the nearest railroad line. dc denotes country fixed effects,
X0

i,c is a vector of controls, and b is the coefficient of interest. The dependent variable L̃i,c corresponds
to the z-scored transformation of Lic (ie. L̃i,c = (Lic � µL)/sL). As a baseline outcome, I focus on
Limm stemming from the optimal reallocation scenario with immobile labor. Conclusions are very
similar when focusing on the case with mobile labor or the optimal expansion scenarios (see Tables
A.3 and A.4 in the Appendix). To account for spatial autocorrelation, I follow Bester et al. (2011)
and construct a higher-level spatial grid of 3 degrees latitude by 3 degrees longitude and cluster
standard errors within each of these higher-level grid cells. Country fixed effects make observations
comparable internationally by accounting for the fact that reallocation is performed for each country
individually. The vector of controls X0

i,c contains a series of observable geographic, economic, and
political characteristics.16

The colonial authorities didn’t place railroads randomly across space. To gain more confidence
16Data on controls come from Henderson et al. (2018). In particular, I include in X each grid cell’s average altitude, average

temperature and precipitation, land suitability for agriculture, length of the annual growing period, an index for the stability
of malaria transmission, indicators for the twelve predominant vegetation regions, and indicators for whether a grid cell’s
centroid is within 25 kilometres of a natural harbour, big lake, or navigable river respectively. I also add fourth-order poly-
nomials of a cells latitude and longitude. Lastly, I add information on a cell’s population, night lights, and ruggedness. Note
that these latter three variables were already used in a non-linear way to compute a country’s optimal trade network above.
Results are robust to excluding those “simulation controls” (available upon request).
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in the causal nature of my estimates, I follow Donaldson (2018); Jedwab and Moradi (2016) and also
run all my estimations on a sample of railroad lines that the colonial authorities planned, but never
built. These “placebo railroads” serve as a plausible control group if they were selected based on
similar characteristics at the time (such as growth potential or strategic importance), but ended up
not being realised because of a variety of quasi-random events exogeneous to my model. As Jedwab
and Moradi explain, reasons why such railroads were never realised include a colonial officer who
had been a proponent of a line between Accra and Kumasi dying before making a trip to London
to secure final funding for the project, the Anglo-Ashanti wars ending before development of a
military feeder railroad to Cape Coast could begin, or a support for a planned line between Kericho
and Sotik in Kenya being scrapped because building it would have required viaduct technology and
was hence deemed too expensive (see the online appendix of Jedwab et al., 2017). In total, there are
61 such placebo lines (34,000 kilometres long) and 237 realised railroads (47,000km). South Africa
has the highest amount of total realised rail kilometres, as well as the densest network (measured in
miles per square kilometre). The DRC and Cameroon have the longest and densest placebo network,
respectively. Figure A.5 in the Appendix prints a map.

Figure 4 also prints (in bars) the relevant reduced-form gradient of contemporary road density
and infrastructure discrimination with regards to distance to the placebo railroads. As can be seen,
regions close to a placebo railroads also have more contemporary road infrastructure today, hinting
at a substitutability between rail and road: these connections where evidently deemed important
enough for road infrastructure to step in when rail infrastructure didn’t materialise. Interestingly,
the social planner sees no need to significantly reorganise infrastructure away from locations close
to the placebo rail (the blue bars often cross zero) – potentially because these roads over time formed
more organically and are still important to the functioning of the trade network today.

Results. Table 1 displays results from OLS estimation of equation (6) with L̃imm on the left hand
side and total rail kilometres as explanatory variable Raili. Column (1) reports the baseline associa-
tion between colonial railways and present-day infrastructure discrimination: every 50 kilometres of
colonial railway construction are associated with grid cells losing 0.07 standard deviations of welfare
at the hand of areas without any investment. Column (2) repeats the exercise but using ”placebo”
railroads. Reassuringly, the coefficient is slightly less than half as big (in absolute terms) and not sig-
nificantly different from zero. Columns (3) and (4) distinguish between railroads built for different
purposes: while both military and mining purpose railroads are associated with too much infras-
tructure today, it is in particular areas with military railroads that lose out under the reallocation
scenario.

Columns (5) and (6) trace out the spatial gradient of infrastructure discrimination close to colo-
nial railroad lines. These coefficients are analoguous to those printed in Figure 4, yet with a full
set of controls and clustered errors. We again observe a substantial gradient, with grid cells within
10KM of a realised railroad being 0.18 standard deviations too well off. Magnitudes decline for cells
up to 20KM away, after which the association reverses and even becomes positive beyond 30KM.
No comparable associations can be found for placebo railroads in column (6). This is suggestive
evidence that the confounding effect of colonial infrastructure policies is locally contained. Areas
blessed with a close-by railway line are still too well off today, which comes at the expense of their
neighbouring regions just a few kilometres away.

Do placebo railroads represent a plausible control group? Table A.2 in the Appendix reports
results of balance tests between placebo and realised railroads across the entire sample. The table
prints baseline means of various geographic and economic characteristics of cells (most of which are

17



Table 1: Colonial railroads and local infrastructure discrimination index

Infrastructure discrimination Limm (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.0677⇤⇤⇤

(0.0249)

50 KM of Colonial Placebo Railroads -0.0401
(0.0580)

50 KM of Colonial Railroads for Military Purposes -0.0939⇤⇤
(0.0390)

50 KM of Colonial Railroads for Mining Purposes -0.0448
(0.0284)

<10KM to railroad -0.0926⇤⇤⇤ -0.0393
(0.0334) (0.0241)

10-20KM to railroad -0.117⇤⇤⇤ -0.0128
(0.0331) (0.0267)

20-30KM to railroad -0.0278 -0.0141
(0.0363) (0.0380)

30-40KM to railroad 0.0468⇤ 0.0334
(0.0279) (0.0280)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158
R2 0.764 0.764 0.764 0.764 0.765 0.764

Results of estimation of equation (6) on the sample grid cells for the entire African continent. Dependent variable is the z-scored Local
Infrastructure Discrimination Index L̃imm. Columns (1)-(4) estimate the effect of colonial infrastructure investments as measured by
the total number of colonial railroad kilometres of different types crossing a cell. Geography controls, consisting of altitude, temperature,
average land suitability, malaria prevalence, yearly growing days, average precipitation, indicators for the 12 predominant agricultural
biomes, indicators for whether a cell is a capital, within 25 KM of a natural harbour, navigable river, or lake, the fourth-order polynomial
of latitude and longitude, and an indicator of whether the grid cell lies on the border of a country’s network. They also include population,
night lights, and ruggedness. These indicators went into the original infrastructure reallocation simulation. Standard errors are clustered
on the 3 ⇥ 3 degree level and are shown in parentheses.

in the control vector X0
i,c from above) for cells crossed by a realised railroad (column 1) and a placebo

railroad (column 2), plus the p-value of the null hypothesis of no plain difference-in-means between
the two (column 3). Placebo cells are significantly different from cells with an actual railroad in a
variety of ways, such as more agricultural suitability, precipitation, and more malaria prevalence.
Similarly, they have less population today (which is one of the headline results of the paper by Jed-
wab and Moradi), and are less likely to cross the national capital. To account for the fact that many
of these differences are spatially autocorrelated, column 4 presents p-values of a joint regression
of these geographic indicators on presence of a colonial rail, which shows fewer significant differ-
ences. To assess in what direction these differences bias the main result empirical result that the
social planner would like to reorganise infrastructure away from places with railroads, but not from
places with placebo railroads, these differences need to be combined with how much each covari-
ate impacts infrastructure discrimination L. For example, treated cells have a lower agricultural
suitability (conceivably a proxy for productive places in colonial times) yet higher night luminosity
(a proxy for productivity today) than placebo cells. If the social planner systematically reallocated
roads towards places with such characteristics, this would result in bias. However, looking at col-
umn 1 of Table A.1, neither of these proxies significantly correlates with Limm today, making any
such bias less of a concern. Column 5 combines the sign of any remaining significant difference with
the sign and significance of the relevant connection between all covariates and Limm. The two main
potential avenues for bias in favour of the result are road density and whether a cell is at a coun-
try’s border (places with realised railroads have more current roads and are less likely to be at the
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border, both of which are associated with lower levels of discrimination, leading to opposite signs
of the potential boas). Since current road density can be seen to itself be outcomes of colonial rail-
road investments, one plausible interpretation of this is that railroads had an effect on infrastructure
density, and through this are now affecting infrastructure disparities across space.17,18

The effects described in Table 1 are small, yet remarkable. Across the African continent, areas that
received large infrastructure investments a century ago are still too well off given their position in the
national trade network. In contrast, areas that were not crossed by tracks are inefficiently short on
infrastructure today. To see that this is a non-trivial finding, note that, firstly, most of the colonial rail-
way lines have been in disrepair for decades and thus do not immediately dictate trade flows today.
Secondly, recall that the optimal network reallocation and construction of Li was based on roads and
cars, not rails and trains. The implication is hence not that colonial railway systems themselves are
inadequate to efficiently sustain inter-regional trade today. Rather the transport revolution a century
ago coordinated the entire economy into a certain spatial equilibrium, which persists even though it
has become inefficient. African nations would benefit from moving to a better equilibrium, but are
locked in the current state. The social planner identifies this, seeks to overcome these misallocations,
and moves infrastructure away from regions once considered important by the colonisers. The even
stronger findings for military railroads reinforces that point: while mining railroads arguably still
dictate trade flows today, military railroads have become completely obsolete and are much more
clearly associated with imbalanced infrastructure stocks across space. In short, Jedwab and Moradi
show that colonial investments helped the economy to coordinate on one of many spatial equilibria
– my findings suggest that this is not the optimal one.

These results are largely unchanged in the case of mobile labor (though estimates are slightly
larger, see upper panel of Table A.3 in the Appendix), and for optimal expansion instead of realloca-
tion (with similar magnitudes, see Table A.4)

Persistence: suggestive mechanisms. Why would colonial investments a century ago still play a
role in the spatial configuration of Africa’s trade network today? The literature has documented
such spatial persistence across contexts and time periods (Davis and Weinstein, 2002; Miguel and
Roland, 2011; Bleakley and Lin, 2012; Dell, 2010; Lowes et al., 2017; Bertazzini, 2022). Infrastruc-
ture is a prime candidate for spatial persistence, as it is long-lasting and immobile. However, if
infrastructure investments by colonial authorities skewed African trade networks into an inefficient
configuration, how well could African governments have been able to counter these imbalances post
independence?

Existing studies have shown that infrastructure and other government investments are often
motivated in part by political economy concerns and regional favouritism (Hodler and Raschky,
2014; Burgess et al., 2015; De Luca et al., 2018; Dreher et al., 2019). To investigate whether such
favouritism is associated with trade network imbalances today, I make use of a dataset of African
national leaders provided by Dreher et al. (2019). The data entail information about the birth region
and time in office of 117 heads of state holding power in 44 African countries dating back to 1969

17There are other covariates that might account for bias against the main estimate of Table 1. For example, the fact that
treated cells have higher population today does not immediately bias the main specification, as population is not a significant
determinate of infrastructure provision Limm (if anything, places with more population have slightly higher discrimination
measures, which would go against the direction of the main estimate, see column 1 of Table A.1). Column 5 of Table A.2
reports in which direction significant differences between rail and placebo cells could plausibly produce concerns of bias,
based on whether a covariate is a significant predictor of infrastructure discrimination.

18The finding that the social planner finds it optimal to reallocate benefit economically less productive regions at the ex-
pense of regions with high night luminosity could hint at previous over-agglomeration on the African continent. Investigating
this hypothesis could be an exciting avenue for future work.
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Table 2: Regional favoritism

Discrimination Limm Relative road expenditure

(1) (2) (3) (4)
Panel A: entire sample
Ever in power dummy -0.0988⇤

(0.0525)

log(1 + Total years in power) -0.0324
(0.0214)

Panel B: Kenyan road expenditure over time
Limm (non-democracy) -2.550⇤⇤

(1.114)

Limm (democracy) 0.503
(0.756)

Year and District FE Yes Yes
(Demographic, political, economic, geographic) ⇥ trend Yes Yes
Country FE Yes Yes
Geography Controls Yes Yes
N 10158 10158 451 410
R2 0.764 0.764 0.362 0.215

Columns 1-2 print coefficient from a regression similar to equation (6): L̃i,c = bPoweri,c + Xi,cg + dc + ei,c where Poweri,c is either a
dummy equaling one if anybody from grid cell i ever rose to power in country c (column 1), or the log total amount of years such people
have spent in power. Geography controls as i Table 1. Columns 3-4 present estimates from a panel regression of equation (7) in the spirit
of Burgess et al. (2015). Demographic, political, economic, and geographic controls include a district’s 1962 population, urbanisation
rate, wage earnings, wage-employment, cash crop production value, as well as its area, distance to Nairobi, and whether it is at Kenya’s
border or on the Mombasa-Nairobi corridor, all interacted with a time trend.

and spatially merge them onto my grid dataset.
Column 1 of Table 2 present results of a specification similar to (6), yet including on the right

hand side a dummy for whether somebody born in a given grid cell ever rose to power of their
nation (in place of Raili,c). Indeed, birthplaces of African leaders would lose about 0.1 standard
deviations worth of welfare compared to other cells if the social planner had her way. Column 2
investigates the intensive margin by regressing L̃imm on the log of total years that a son or daughter
of a given grid cell was in power19 and finds suggestive (albeit insignificant) evidence that more
years in power are associated with even more favourable networks.

To get a better sense of how political economy concerns might impede government’s efforts to
rein in on inefficient trade networks in real time, I revisit an analysis by Burgess et al. (2015). The
authors focus on Kenya and find that government spending on road developments were more likely
to go to regions that are coethnic with the country’s leader at the time, but that this association goes
away in times of democracy. A natural question of interest is whether this spending on favoured
regions also represents suboptimal investments from the social planner’s view.

To speak to this, I recompute my infrastructure discrimination measure at different points in
time across Kenya’s history. I use historical data on Kenya’s road network from 21 different years
between 1963 and 2007 coming from digitised Michelin maps provided by Jedwab and Storeygard
(2022). I aggregate these infrastructure stocks onto the level of Kenyan districts, provided by Burgess
et al. (2015). At each point in time, I then use my model to compute the optimally reallocated and
expanded counterfactual road network, as well as discrimination measures L. Figure A.7 print
maps of optimal networks for two different years. More details on this procedure are described in

19To account for the many zeroes in the data, I add 1 to each entry, noting that this is not innocuous (see Chen and Roth,
2023).
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appendix C.3. I then run an analogue of the main regression in Burgess et al. (2015)

Road expenditure sharedt = gd + at + b(coethnic districtdt) + q(Xd ⇥ [t � 1962]) + Ldt + edt (7)

across districts d and years t. Following Burgess et al., Road expenditure sharedt is the ratio of a
districts road expenditure share, divided by its population share. (Xd ⇥ [t � 1962]) is a vector of
controls interacted with a time trend, and (coethnic districtdt) is a dummy of whether the country’s
president in year t belongs to the same ethnic group as the majority of district d. Ldt is my model-
generated discrimination measure.

Table 2, columns 3-4 present results of estimating equation (7) separately for periods in which
Kenya had no multiparty democracy (1970-1992) and in which it did (1963-1969, and again 1993-
2007). Column 3 shows that in times of non-democracy, road expenditure significantly skews to-
wards regions the social planner identifies as already being too well off, relative to the social opti-
mum. The negative coefficient implies that a one standard deviation lower welfare improvement
from optimal reallocation is associated with about 2.5 more relative spending per capita. The trend
somewhat reverses in times of democracy, even though the point estimate is noisy: column 4 yields
suggestive, yet not statistically significant evidence that during multiparty rule, investments tend to
go towards districts that the social planner identifies as being in need of more infrastructure.20,21

Discussion. African countries were left with an economic network that wasn’t designed to sustain
them as independent countries. Through badly drawn national borders and railroads built for ex-
tractive economies, the colonial authorities coordinated countries onto a certain spatial equilibrium,
characterised fundamentally by substantial geographic inequalities (Alesina et al., 2011, 2016; Jed-
wab and Moradi, 2016; Michalopoulos and Papaioannou, 2014, 2016, 2020). Subsequent investments
into road infrastructure were constrained by this violent history. They were also often less effective
because of regional and ethnic favouritism. With this legacy in mind, my analysis asks what could
have been achieved if, over the long run, road networks in each African country had been designed
optimally, without being constrained by colonial boundaries or outdated infrastructure projects.

My analysis shows that the shadow of these transport network inefficiencies is still looming large:
African countries would gain between 1-6% of welfare if they could reorganise their networks from
scratch, representing substantially higher gains than in other world regions. Yet at the same time,
my findings also imply that similar welfare gains can be achieved by a large one-time infrastructure
investment program. While this would undoubtedly represent an ambitious endeavor, it might not
be out of reach.

20Results are similar, albeit even noisier and insignificant, in the case of immobile labor, or optimal expansion (see Table
A.9 in the Appendix). I also run a version of equation (7) with added interaction effects (see Table A.8 in the Appendix).
I find suggestive evidence that non-democracies target districts that are even less in need of added infrastructure, if that
district shares ethnicity with the president at the time (column 3). This effect also doesn’t fully disappear in democratic
times: while road expenditure does go towards places the planner also favours during those times, this effect is strongest for
coethnic districts. This could hint at a “residual favouritism” effect, ie. a democratic leadership makes welfare-improving
investments, yet in particular if those also serve their core constituency.

21Next to local governments, the other large source of infrastructure spending in Africa is foreign aid. In Appendix section
D, I investigate whether aid by the World Bank and China help in overcoming the infrastructure imbalances I identify. Using
data from AidData (2017) and Strange et al. (2017) on the precise destination of thousands of lending lines from the World
Bank and China to Africa, I find that such foreign-sponsored projects by either source are also not more likely to go to cells
my model predicts as being particularly in need. Indeed, total $-value of World Bank or China disbursements, as well as
the number of transport-sector projects, are significantly correlated with locations deemed too well off, relative to the global
optimum. Foreign aid hence presents a second powerful candidate to explain persistence of infrastructure imbalance across
Africa.
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6 Conclusion

In this paper, I identify spatial inefficiencies in Africa’s trade network. I first construct a comprehen-
sive economic topography of the entire continent, bringing together data from a variety of sources.
I then present a simple network trade model and simulate the flow of goods through the internal
geography formed by 10,000 African regions and almost 75,000 network connections. Harnessing
the theoretical contribution by Fajgelbaum and Schaal (2020), I endogenise the transport network
in order to derive the unique optimally reorganised as well as expanded road network for every
country in Africa.

I then compare each country’s current network to its hypothetically optimal one. I rank coun-
tries by overall network efficiency and presented a fine-resolution spatial dataset quantifying which
sub-national areas are disadvantaged by the status quo. I empirically investigate patterns of trade
network imbalances over space and link inefficiencies to persistent lock-in effects caused by colonial
infrastructure investments and differential treatment on the basis of regional favouritism.

The main theoretical shortcoming of my model is its lack of dynamics, especially when combined
with agglomeration forces. Indeed, infrastructure policy in the real world is often an attempt to steer
an economy onto a persistent new growth path by making people meet that otherwise wouldn’t
have met (Michaels et al., 2021). This could threaten the results by making dynamically efficient
infrastructure choices look statically inefficient. Recent theoretical advances such as Allen and Don-
aldson (2022) open the door for potentially exciting research on quantifying not just spatial, but also
temporal inefficiencies in trade networks across the world.

In contributing a comprehensive spatial measure on the differential provision of a primary pub-
lic good covering an entire continent, my study provides the quantitative foundation for further
research questions pertaining to inequality over space. Future research designs could employ my
dataset to analyse regional roots of conflict, political activism, social mobility, or subjective overall
wellbeing. Another interesting avenue for inquiry could be to investigate whether infrastructure
inefficiency spatially covaries with the provision of other public goods like education or health. My
findings can also be benchmarked against other programs aimed at overcoming spatial inefficien-
cies, such as the relaxation of labor and capital frictions. Lastly, extending my analysis to larger ge-
ographical units could shed light on returns to continent-wide international infrastructure projects.

Identifying spatial inefficiencies and understanding their historical and political roots can be the
first step in outlining effective place-based policies. Equipped with an unparalleled availability of
spatial data and computing power, policymakers in Africa and around the world should feel em-
powered to combat local imbalances and design powerful interventions to better connect millions.

22



References

AidData (2017). World Bank Geocoded Research Release, Version 1.4.2. http://aiddata.org/data/
world-bank-geocoded-research-release-level-1-v1-4-2 (Accessed: 2018-04-06). Williams-
burg, VA and Washington, DC

Alder, Simon (2022). Chinese Roads in India: The Effect of Transport Infrastructure on Economic
Development. Working Paper

Alesina, Alberto, William Easterly, and Janina Matuszeski (2011). Artificial States. Journal of the
European Economic Association 9(2), pp. 246–277

Alesina, Alberto, Stelios Michalopoulos, and Elias Papaioannou (2016). Ethnic inequality. Journal
of Political Economy 124(2), pp. 428–488
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Teravaninthorn, Supee and Gaël Raballand (2009). Transport Prices and Costs in Africa: A Review of
the Main International Corridors. Directions in Development; Infrastructure. World Bank Publica-
tions, Washington DC

The Economist (2015). All aboard. The Economist February 26, 2015
The World Bank (2017). The World Bank Annual Report 2017. Technical report, The World Bank,

Washington DC
Wang, Haizhong, Jia Li, Qian-Yong Chen, and Daiheng Ni (2011). Logistic modeling of the equi-

librium speed–density relationship. Transportation Research Part A: Policy and Practice 45(6), pp.
554–566

26



Appendix

A Additional figures and tables

Figure A.1: Cross validation of OSM roads data
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Cross validation of Open Street Maps (OSM) speed data with Google Maps (GM). I scrape routing information from GM for a random
1% subset of connections. Panel (a) plots the distributions of the resulting speed measures from both providers against each other. Panel
(b) plots both speed distributions against the log of the average population between origin and destination grid cells. Regression lines
with 95% confidence intervals are overlaid. Note, these speeds are faster than the average speeds reported in the main text of the paper, as
they do not include the significant amount of time spent walking in many parts of the network.
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Figure A.2: Example where optimal expansion can still lead to local losses
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Example of how optimal expansion can lead to losses in some regions, even when they do not lose any infrastructure. In this example,
locations A and C produce the same variety and are small. Location B produces a second variety and is much closer to C but ex-ante only
connected to A. Optimal expansion connect B and C, which leads to welfare increases on aggregate, but hurts location A, who can now
sell less to B and hence get less of B’s variety.

Figure A.3: Reallocation and expansion scenarios
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Figure A.4: Correlations of L with other road network measures
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Raw correlations of various L measures of infrastructure discrimination with plausible other road network measures. The first row reports
scatter plots of Limm without labor mobility against a measure of market access change, ex-ante road density, and road gain. Market access
is defined as MAi = Âj(1 + tij)�szj Lj where tij corresponds to the cost of shipping a quantity of Q = 1 over the network. I compute
the change in MA from the static network before re-allocation to the optimal one post re-allocation. Ex-ante road density is defined as
Ii,initial/Li where Ii,initial is the average infrastructure on all links originating at i before re-allocation. Lastly, infrastructure gain is defined
as Ii,optimal � Ii,initial, the ratio of average infrastructure orginating in a link after vs before the reallocation exercise. The remaining rows
repeat this exercise for L10%

imm , Lmob, and L10%
mob
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Figure A.5: Colonial railway network

Maps displaying the network of railway lines (red) and placebo railroads (blue). Data from Jedwab and Moradi (2016) and Herranz-
Loncán and Fourie (2017). Railroads built by the colonial powers between 1890 and 1960 are printed in red. Lines that were initially
planned but never actually built are printed in blue.

Figure A.6: Further spatial data used

(a) Locations of ports (b) Leaders’ birthplaces

Spatial distribution of ports and leaders’ birthplaces across the continent. Ports data is hand-coded from Lloyd’s list at
https://directories.lloydslist.com/port and corresponds to the 90 biggest ports in Africa. Birthplace data from Dreher et al. (2019).
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Figure A.7: Reallocation of historical road networks in Kenya

(a) Kenya 1963: before reallocation1963 (b) Kenya 1963: after reallocation1963

(c) Kenya 2007: before reallocation2007 (d) Kenya 2007: after reallocation2007

Ex-ante and optimally reallocated road networks for Kenya in 1963 and 2007. Ex-ante roads data from Jedwab and Storeygard (2022).
Each dot represents a district with size proportional to its 1962 population (from Burgess et al., 2015). Maps print the reallocation with
immobile labor.
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Figure A.8: Spatial distribution of development aid projects to African nations

(a) World Bank aid (b) Chinese aid

Foreign aid projects funded by the World Bank (A.8a) and China (A.8b). Each dot represents one project site with radius proportional to
the logarithm of total disbursements flowing to each site. World Bank data comprise all projects approved between 1996–2014. Chinese
data include tracked projects between 2000–2011. Map only depicts projects coded with sufficient precision to not be excluded (see
Appendix text). If a project has multiple sites, total disbursements are assumed evenly distributed between locations. Data from AidData
(2017) and Strange et al. (2017). Legend denotes disbursement values in million 2011 US dollars. Note that the legends have different
scales.
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Table A.1: Geographic correlates of infrastructure discrimination measures

(1) (2) (3) (4) (5) (6)
Limm L10%

imm Lmob L10%
mob Housing Housing (pc)

Population (in 100,000) 0.00227 0.00226 -0.0104⇤⇤ -0.0144⇤⇤ 0.00468 0.00996⇤⇤⇤
(0.00263) (0.00263) (0.00458) (0.00619) (0.00289) (0.00349)

Ruggedness -0.00000267 -0.00000370 0.00000470 0.00000499 -0.00000355 -0.00000551
(0.00000333) (0.00000326) (0.00000308) (0.00000314) (0.00000418) (0.00000340)

Night lights -0.0148⇤⇤⇤ -0.0138⇤⇤⇤ -0.0230⇤⇤⇤ -0.0222⇤⇤⇤ -0.00766⇤⇤ -0.0122⇤⇤
(0.00430) (0.00424) (0.00496) (0.00535) (0.00347) (0.00592)

Altitude -0.0000726 -0.0000276 0.000110⇤ 0.000112⇤ -0.0000418 -0.000238⇤⇤⇤
(0.0000532) (0.0000537) (0.0000585) (0.0000626) (0.0000473) (0.0000775)

Agr. suitability index 0.0658 0.0808 -0.0225 -0.0404 -0.0741 -0.0844⇤
(0.0534) (0.0511) (0.0477) (0.0585) (0.0514) (0.0484)

Temperature -0.0141 -0.00688 -0.00672 0.00204 0.0109 -0.0427⇤⇤
(0.0119) (0.0120) (0.0117) (0.0122) (0.0127) (0.0170)

Precipitation 0.0000230 -0.00000789 0.00109⇤ 0.00162⇤⇤ 0.00825 0.00404
(0.000437) (0.000399) (0.000594) (0.000680) (0.00707) (0.00373)

Yearly growing days 0.0000557 0.000187 -0.000367 -0.000390 -0.00117 -0.000551
(0.000293) (0.000270) (0.000337) (0.000391) (0.00115) (0.000607)

Malaria prevalence 0.00264 0.00405 -0.00162 -0.000610 -0.000882 0.00108
(0.00257) (0.00247) (0.00198) (0.00212) (0.00229) (0.00262)

< 25 KM from suitable harbor -0.130 -0.0509 -0.0524 -0.216 1.685 2.477
(0.0840) (0.0757) (0.147) (0.179) (1.578) (2.420)

< 25 KM from navigable river -0.319⇤⇤ -0.333⇤⇤ -0.107 -0.0706 0.0991 0.138⇤
(0.158) (0.155) (0.125) (0.125) (0.0831) (0.0733)

< 25 KM from navigable lake 0.0397 0.0370 -0.138⇤⇤ -0.157⇤ 0.0127 -0.00541
(0.0587) (0.0643) (0.0601) (0.0830) (0.0519) (0.0337)

National capital -0.00962 -0.0259 0.0544 -0.0546 -0.137 -0.231⇤
(0.0825) (0.0850) (0.0837) (0.111) (0.0934) (0.118)

At national border -0.152⇤⇤⇤ -0.152⇤⇤⇤ -0.0134 0.00541 0.0386 0.0530⇤⇤
(0.0189) (0.0187) (0.0176) (0.0179) (0.0335) (0.0259)

Road density (z-scored) -0.187⇤⇤⇤ -0.197⇤⇤⇤ -0.155⇤⇤⇤ -0.186⇤⇤⇤ -0.0106 -0.115⇤⇤
(0.0256) (0.0254) (0.0227) (0.0256) (0.0514) (0.0461)

Country FE Yes Yes Yes Yes Yes Yes
Remaining Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 8580 8384
R2 0.769 0.782 0.887 0.863 0.0533 0.466

Geographic correlates of the various model-implied measures, obtained from a joint regression of L on the vector X. Fourth-order polyno-
mials of latitue and longitude, as well as country fixed effects are not printed.
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Table A.2: Geographic correlates of realised and placebo railway lines

(1) (2) (3) (4) (5)
Rail Placebo p-value p-value (joint) Bias (Limm)

Population (in 100,000) 3.27 1.96 0.00 0.00 (unclear)
(7.03) (4.24)

Ruggedness 2463.68 1801.06 0.00 0.87 (unclear)
(3193.47) (2458.56)

Night lights 1.36 0.24 0.00 0.33 (unclear)
(5.18) (0.98)

Altitude 793.71 786.20 0.43 0.46 (unclear)
(521.08) (492.70)

Agr. suitability index 0.37 0.42 0.00 0.97 (unclear)
(0.26) (0.26)

Temperature 22.74 23.93 0.00 0.60 (unclear)
(4.14) (3.24)

Precipitation 73.40 91.06 0.00 0.18 (unclear)
(45.39) (37.65)

Yearly growing days 155.05 199.77 0.00 0.01 (unclear)
(85.70) (86.08)

Malaria prevalence 9.87 12.79 0.00 0.33 (unclear)
(9.84) (9.65)

< 25 KM from suitable harbor 0.01 0.00 0.05 0.43 (unclear)
(0.08) (0.04)

< 25 KM from navigable river 0.01 0.01 0.17 0.33 (unclear)
(0.12) (0.08)

< 25 KM from navigable lake 0.01 0.02 0.15 0.83 (unclear)
(0.10) (0.15)

National capital 0.03 0.02 0.02 0.46 (unclear)
(0.16) (0.13)

At national border 0.31 0.38 0.00 0.00 Against
(0.46) (0.48)

Road density (z-scored) 0.35 0.24 0.00 0.00 In favour
(0.74) (0.89)

Raw means of different geographic variables for grid cells touched by a colonial railroad (1) or a placebo railroad (2). Column (3)
prints p-values of a t-test of no means difference between (1) and (2). Column (4) prints p-values of a regression of all geographic
variables at once, plus the other variables used in the main regression (6), ie country fixed-effects, and higher-order lat-lon polynomials:
IsRaili,c = b0 + Xi,cg + dc + ei Column (5) prints the direction any significant difference from column (4) might bias the main result. To
do so, it multiplies direction of the difference from (4) with the direction of the correlation of the covariate with Limm, taken from column
(1) of Table A.1. For example, rail cells have significantly higher road density than placebo cells, and high road density is associatied
with lower Limm values (see Table A.1), so this might bias in favour of the main hypothesis that rail cells have lower Limm values than
placebo cells. Bias is coded as (unclear) if either the p-value in column (4) is lower than 0.05, or the p-value against the H0 of zero of the
respective covariate in column (1) of Table A.1 is less than 0.05.
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Table A.3: Colonial railroads: mobile labor (upper panel) and ex-ante road density (lower panel)

Infrastructure discrimination Lmob (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.106⇤⇤⇤

(0.0195)

50 KM of Colonial Placebo Railroads 0.101
(0.0672)

50 KM of Colonial Railroads for Military Purposes -0.119⇤⇤⇤
(0.0311)

50 KM of Colonial Railroads for Mining Purposes -0.0982⇤⇤⇤
(0.0314)

<10KM to railroad -0.147⇤⇤⇤ 0.00884
(0.0276) (0.0244)

10-20KM to railroad -0.135⇤⇤⇤ 0.0152
(0.0268) (0.0264)

20-30KM to railroad -0.0792⇤⇤⇤ 0.00881
(0.0268) (0.0273)

30-40KM to railroad -0.0496⇤⇤ -0.000634
(0.0246) (0.0179)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158
R2 0.884 0.884 0.884 0.884 0.885 0.884

Ex-ante road density (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads 0.115⇤⇤⇤

(0.0204)

50 KM of Colonial Placebo Railroads 0.0533
(0.105)

50 KM of Colonial Railroads for Military Purposes 0.133⇤⇤⇤
(0.0384)

50 KM of Colonial Railroads for Mining Purposes 0.116⇤⇤⇤
(0.0308)

<10KM to railroad 0.180⇤⇤⇤ 0.0636⇤
(0.0307) (0.0346)

10-20KM to railroad 0.107⇤⇤⇤ 0.0433
(0.0264) (0.0392)

20-30KM to railroad 0.144⇤⇤⇤ -0.00385
(0.0268) (0.0311)

30-40KM to railroad 0.0775⇤⇤⇤ 0.0458
(0.0285) (0.0325)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158
R2 0.861 0.860 0.860 0.860 0.861 0.860

Replication of Table 1, but with Lmob (upper panel) and ex-ante infrastructure density Ic (lower panel) as dependent variables, both
z-scored.
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Table A.4: Colonial railroads: New investments

Infrastructure discrimination L10%
imm (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.0689⇤⇤⇤

(0.0227)

50 KM of Colonial Placebo Railroads -0.0331
(0.0562)

50 KM of Colonial Railroads for Military Purposes -0.0850⇤⇤
(0.0357)

50 KM of Colonial Railroads for Mining Purposes -0.0554⇤
(0.0299)

<10KM to railroad -0.0945⇤⇤⇤ -0.0340
(0.0321) (0.0267)

10-20KM to railroad -0.111⇤⇤⇤ -0.0159
(0.0299) (0.0275)

20-30KM to railroad -0.0222 -0.0163
(0.0326) (0.0385)

30-40KM to railroad 0.0497 0.0365
(0.0307) (0.0294)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158
R2 0.777 0.777 0.777 0.777 0.777 0.777

Infrastructure discrimination L10%
mob (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.145⇤⇤⇤

(0.0239)

50 KM of Colonial Placebo Railroads 0.181⇤⇤
(0.0764)

50 KM of Colonial Railroads for Military Purposes -0.161⇤⇤⇤
(0.0382)

50 KM of Colonial Railroads for Mining Purposes -0.147⇤⇤⇤
(0.0384)

<10KM to railroad -0.202⇤⇤⇤ 0.0226
(0.0345) (0.0271)

10-20KM to railroad -0.171⇤⇤⇤ 0.0304
(0.0324) (0.0302)

20-30KM to railroad -0.118⇤⇤⇤ 0.0257
(0.0315) (0.0331)

30-40KM to railroad -0.0735⇤⇤ 0.0118
(0.0305) (0.0194)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158
R2 0.859 0.858 0.859 0.859 0.860 0.858

Replication of Table 1, but with L10%
imm (upper panel) and L10%

mob (lower panel) as dependent variables, both z-scored.
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Table A.5: Colonial railroads: no market power (optimal reallocation)

Infrastructure discrimination Limm (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.126⇤⇤⇤

(0.0357)

50 KM of Colonial Placebo Railroads -0.0610
(0.0955)

50 KM of Colonial Railroads for Military Purposes -0.149⇤⇤⇤
(0.0508)

50 KM of Colonial Railroads for Mining Purposes -0.124⇤⇤
(0.0498)

<10KM to railroad -0.174⇤⇤⇤ -0.0521
(0.0493) (0.0407)

10-20KM to railroad -0.187⇤⇤⇤ -0.0739
(0.0452) (0.0453)

20-30KM to railroad -0.0472 -0.0302
(0.0530) (0.0651)

30-40KM to railroad 0.0945⇤ 0.0564
(0.0481) (0.0531)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158
R2 0.236 0.235 0.236 0.235 0.237 0.235

Infrastructure discrimination Lmob (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.254⇤⇤⇤

(0.0504)

50 KM of Colonial Placebo Railroads 0.0270
(0.162)

50 KM of Colonial Railroads for Military Purposes -0.298⇤⇤⇤
(0.0697)

50 KM of Colonial Railroads for Mining Purposes -0.214⇤⇤⇤
(0.0724)

<10KM to railroad -0.331⇤⇤⇤ -0.0494
(0.0632) (0.0588)

10-20KM to railroad -0.342⇤⇤⇤ -0.0490
(0.0580) (0.0680)

20-30KM to railroad -0.233⇤⇤⇤ -0.0386
(0.0741) (0.0655)

30-40KM to railroad -0.170⇤⇤⇤ -0.0428
(0.0632) (0.0545)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158
R2 0.505 0.502 0.504 0.503 0.508 0.502

Replication of Table 1, but with Limm (upper panel) and Lmob (lower panel) computed without the assumption of traders having market
power (from Atkin and Donaldson, 2015) as dependent variables, both z-scored.
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Table A.6: Colonial railroads: no market power (optimal expansion)

Infrastructure discrimination L10%
imm (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.117⇤⇤⇤

(0.0336)

50 KM of Colonial Placebo Railroads -0.120
(0.104)

50 KM of Colonial Railroads for Military Purposes -0.127⇤⇤⇤
(0.0471)

50 KM of Colonial Railroads for Mining Purposes -0.128⇤⇤
(0.0538)

<10KM to railroad -0.168⇤⇤⇤ -0.0777⇤
(0.0467) (0.0443)

10-20KM to railroad -0.167⇤⇤⇤ -0.0931⇤
(0.0417) (0.0486)

20-30KM to railroad -0.0387 -0.0539
(0.0514) (0.0671)

30-40KM to railroad 0.0917⇤ 0.0634
(0.0529) (0.0569)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158
R2 0.241 0.240 0.240 0.240 0.242 0.240

Infrastructure discrimination L10%
mob (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.317⇤⇤⇤

(0.0539)

50 KM of Colonial Placebo Railroads -0.00492
(0.168)

50 KM of Colonial Railroads for Military Purposes -0.352⇤⇤⇤
(0.0759)

50 KM of Colonial Railroads for Mining Purposes -0.299⇤⇤⇤
(0.0781)

<10KM to railroad -0.417⇤⇤⇤ -0.0581
(0.0703) (0.0629)

10-20KM to railroad -0.401⇤⇤⇤ -0.0543
(0.0622) (0.0713)

20-30KM to railroad -0.309⇤⇤⇤ -0.0399
(0.0799) (0.0707)

30-40KM to railroad -0.215⇤⇤⇤ -0.0457
(0.0702) (0.0595)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158
R2 0.477 0.472 0.475 0.473 0.481 0.472

Replication of Table 1, but with L10%
imm (upper panel) and L10%

mob (lower panel) computed without the assumption of traders having market
power (from Atkin and Donaldson, 2015) as dependent variables, both z-scored.
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Table A.7: Colonial railroads and local amenities

Housing (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.0161

(0.0134)

50 KM of Colonial Placebo Railroads 0.0852
(0.0581)

50 KM of Colonial Railroads for Military Purposes -0.00118
(0.0260)

50 KM of Colonial Railroads for Mining Purposes -0.0291
(0.0337)

<10KM to railroad -0.0133 0.0286
(0.0195) (0.0260)

10-20KM to railroad -0.0108 0.0292
(0.0176) (0.0250)

20-30KM to railroad 0.0125 0.0159
(0.0203) (0.0202)

30-40KM to railroad 0.00718 0.0210
(0.0170) (0.0159)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 8580 8580 8580 8580 8580 8580
R2 0.0533 0.0533 0.0533 0.0533 0.0533 0.0533

Housing per capita (z-scored) Real Placebo

(1) (2) (3) (4) (5) (6)
50 KM of Colonial Railroads -0.0583⇤⇤⇤

(0.0151)

50 KM of Colonial Placebo Railroads 0.0195
(0.0541)

50 KM of Colonial Railroads for Military Purposes -0.0441⇤
(0.0224)

50 KM of Colonial Railroads for Mining Purposes -0.0389
(0.0250)

<10KM to railroad -0.0656⇤⇤⇤ 0.00740
(0.0214) (0.0204)

10-20KM to railroad -0.0619⇤⇤⇤ -0.0114
(0.0221) (0.0219)

20-30KM to railroad -0.0569⇤⇤⇤ -0.00989
(0.0201) (0.0172)

30-40KM to railroad -0.0247 0.00361
(0.0184) (0.0150)

Country FE Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes
N 8384 8384 8384 8384 8384 8384
R2 0.464 0.464 0.464 0.464 0.464 0.464

Replication of Table 1, but with total model-implied housing Hi (upper panel) and per-capita model implied housing hi (lower panel) as
dependent variables, both z-scored.
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Table A.8: Regional favoritism: Interaction effects

Relative road expenditure

(1) (2) (3) (4)
Panel A: Kenyan road expenditure over time
Limm (non-democracy) -2.550⇤⇤ -2.548⇤⇤

(1.114) (1.111)

Limm (democracy) 0.503 0.344
(0.756) (0.740)

Coethnic district 1.433⇤⇤⇤ 1.206⇤⇤ 1.577⇤⇤⇤ 0.940⇤
(0.402) (0.588) (0.520) (0.541)

Limm⇥ Coethnic district -0.378 0.793⇤
(0.725) (0.446)

Year and District FE Yes Yes Yes Yes
(Demographic, political, economic, geographic) ⇥ trend Yes Yes Yes Yes
N 451 410 451 410
R2 0.362 0.215 0.363 0.216

Replication of Table 2, columns 3-4. Yet also adding an interaction effect Ldt ⇥ coethnicdt.
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Table A.9: Regional favouritism: Optimal expansion immobile labor (top), mobile labor reallocation
(middle), mobile labor expansion (bottom)

Discrimination L10%
imm Relative road expenditure

(1) (2) (3) (4)
Panel A: entire sample
Ever in power dummy -0.103⇤

(0.0532)

log(1 + Total years in power) -0.0335
(0.0215)

Panel B: Kenyan road expenditure over time
L10%

imm (non-democracy) -0.864
(0.724)

L10%
imm (democracy) 0.00296

(0.447)
Year and District FE Yes Yes
(Demographic, political, economic, geographic) ⇥ trend Yes Yes
Country FE Yes Yes
Geography Controls Yes Yes
N 10158 10158 451 410
R2 0.777 0.777 0.356 0.215

Discrimination Lmob Relative road expenditure

(1) (2) (3) (4)
Panel A: entire sample
Ever in power dummy -0.0374

(0.0607)

log(1 + Total years in power) -0.0111
(0.0275)

Panel B: Kenyan road expenditure over time
Lmob (non-democracy) -0.239

(1.346)

Lmob (democracy) 0.582
(0.931)

Year and District FE Yes Yes
(Demographic, political, economic, geographic) ⇥ trend Yes Yes
Country FE Yes Yes
Geography Controls Yes Yes
N 10158 10158 451 410
R2 0.884 0.884 0.354 0.215

Discrimination L10%
mob Relative road expenditure

(1) (2) (3) (4)
Panel A: entire sample
Ever in power dummy -0.0463

(0.0775)

log(1 + Total years in power) -0.0145
(0.0335)

Panel B: Kenyan road expenditure over time
L10%

mob (non-democracy) -0.810
(1.115)

L10%
mob (democracy) 0.0635

(0.567)
Year and District FE Yes Yes
(Demographic, political, economic, geographic) ⇥ trend Yes Yes
Country FE Yes Yes
Geography Controls Yes Yes
N 10158 10158 451 410
R2 0.858 0.858 0.355 0.215

Replication of Table 2, yet with L10%
imm (upper panel), Lmob (middle panel), and L10%

mob (lower) panel as dependent variables, all z-scored.
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B Numerically solving the planner’s problem

The full planner’s problem on page 5 consists of a very large number of choice variables and hence
requires vast computation efforts when solved directly. Fortunately, Fajgelbaum and Schaal (2020)
provide guidance on how to transform this primal problem into its much simpler dual representation.
The following section illustrates how to use their derivation to numerically solve my version of the
model.

To show how a unique global optimum exists, first note that every constraint of the social plan-
ner’s problem is convex but potentially for the Balanced Flows Constraint. However, the introduction
of congestion causes even the Balanced Flows Constraint to be convex if b > g. To see this, note that
every part of the lengthy constraint is linear, but for the interaction term Qn

i,ktn
i,k(Q

n
i,k, Ii,k) represent-

ing total trade costs. Since tn
i,k was parameterised as in (1), this expands to
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which is convex if b > g. Under this condition, the social planner’s problem is to maximise a
concave objective over a convex set of constraints, guaranteeing that any local optimum is indeed
a global maximum.A.1 b > g describes a notion of congestion dominance: increased infrastructure
expenditure might alleviate the powers of congestion, but it can never overpower it. It precludes
corner solutions in which all available concrete is spent on one link, all but washing away trade costs
and leading to overwhelming transport flows on this one edge. If b > g, geography always wins.

Consider first the full Lagrangian of the primal planner’s problem
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This is a function of the choice variables (Cn
i , Qn

i,k, ci, Ii,k) in all dimensions hi, k, ni and the La-
grange multipliers (�C,�P,�I , ⇣Q, ⇣C, ⇣c, ⇣ I) also in hi, k, ni. Standard optimisation yields first-

A.1This is Fajgelbaum and Schaal Proposition 1.
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order conditions which can be collapsed to the following set of equations
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These directly follow the more general framework outlined in the technical appendix of Fajgelbaum
and Schaal applied to my version of the model. In the final equation denoting optimal infrastructure

supply, k = g(1 + b)
� 1+b

b , and the multiplier lI is such that adherence to the Network Building
Constraint is ensured. Through these algebraic manipulations, I have expressed all choice variables
as functions of merely the Lagrange parameters �P over dimensions hi, k, ni. I can hence recast the
entire Lagrangian in much simpler form as
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where x(�) denote the choice variables as functions of the Lagrange parameters as derived above.
Fajgelbaum and Schaal note that thanks to complementary slackness, all other constraints can be
readily dropped from consideration and only the Balanced Flows Constraint remains part of the prob-
lem.

As Fajgelbaum and Schaal further explain, the dual of this problem can now be conceived as the
minimisation of

min
��0

L(�, x(�))

which is an optimisation problem over merely
���P�� = I ⇥ N variables. Fajgelbaum and Schaal in-

terpret �P as a field of prices varying over goods and locations. I am left only to minimise equation
(A.7) to obtain the price-field �P. I implement constrained optimisations within the fmincon envi-
ronment in MATLAB and achieve fairly fast convergence. Solving for smaller networks (like Rwanda
or Djibouti) is a matter of seconds, yet the largest countries (Algeria, Angola, DRC, and Sudan) each
take about a day of computation time (on a five-year old device, nonetheless). Plugging the derived
�P parameters into the various FOCs in (A.6) yields the optimal transport network Ii,k, trade flows
between locations Qn

i,k, and consumption patterns Cn
i and ci.
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C Calibration details

C.1 Calibrating structural parameters

Tradable budget share a This parameter captures the Cobb-Douglas budget share households
spend on tradable goods. This includes consumption of home-produced goods (ie. food staples)
that could in principle be traded. To calibrate this expenditure share, I rely on analysis by Porteous
(2022) who calibrate budget shares using data from Nigeria and Angola. They set the share for agri-
cultural tradables to 0.4, non-agricultural tradables to 0.3, and non-agricultural non-tradables to 0.3,
respectively. Summing together the two tradables categories, I calibrate a = 0.7.

Elasticity of substitution s There are notoriously many divergent estimates for the trade elasticity
of substitution s (for a review see Head and Mayer, 2014). I rely on a recent review paper by Atkin
and Donaldson (2022), which summarises the literature estimating trade elasticities in developing
country contexts and recommends using a parameter of s = 5. This is slightly higher than the
parameter used by Fajgelbaum and Schaal (2020) in their calibration of interregional European trade
(s = 4), which is not too surprising given that homogeneous agricultural products play a more
important role in African regional trade vis-a-vis Europe.

C.2 Calibrating trade costs ti,k

As described in the main text, I follow Fajgelbaum and Schaal (2020) to assume the following func-
tional form for trade costs between locations i, k for good n:

tn
i,k(Q
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i,k, Ii,k) = dt
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(Qn

i,k)
b

Ig
i,k

Trade flows Qn
i,k on the link increase trade costs through the congestion elasticity parameter b, in-

frastructure Ii,k on the link decreases trade costs through the infrastructure elasticity g. dt
i,k captures

inherent trade costs between the locations, which could in principle depend on any exogeneous or
geographical characteristics of the link.

Infrastructure elasticity g As described in the main text, infrastructure Ii,k is parameterised as the
average attainable speed between locations i and k. Hence, g captures the elasticity of trade costs to
speed improvements. To calibrate it, I use data from a survey of trucking costs across Africa from
Teravaninthorn and Raballand (2009). In particular, the authors investigate transport costs across
the “Southern Corridor” from Durban to Dar and estimate that a 20% reduction of delays at border
posts across this corridor would reduce total aggregate transport costs by 3-4% (Teravaninthorn and
Raballand, 2009, Table 1.3). Delays at border posts are one of the major ways international truck
traffic in Africa gets slowed down, so this yields helpful insights into the cost benefits of speeding
up transport. The authors note that current delays at the border posts along this corridor amount
to about four days or 96hrs (Teravaninthorn and Raballand, 2009, page 9). A search of the route on
Google Maps indicates that without border delays, the total driving time of the corridor is about
59hrs, so that a total of 62% of the entire trip is currently spent waiting. The authors further report
that about 29.8% of all kilometre-weighted trips in the region go along this corridor. Putting it all
together; a reduction of 20% of the 62% of time spent waiting at borders for 29.8% of trips amounts
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to a 3-4% reduction in aggregate transport costs, or

(1 � 0.2 ⇥ 0.62 ⇥ 0.298)g = 1 � 0.035

or g = 0.946.

Congestion elasticity b To calibrate how much additional cars on the road affect trade costs, I rely
on the exercise by Fajgelbaum and Schaal (2017), who compile and aggregate estimates from Wang
et al. (2011) of the relationship between car density and speed using data from Georgia, USA. They
estimate an average relationship of

Speedi,k µ Q1.2446
i,k

Since I posit the relationship between speed and trade costs to be g = 0.946, I nest the two and arrive
at

b = 1.2446 ⇥ g = 1.1774

Exogeneous trade costs dt
i,k To calibrate dt

i,k, I make use of the work of Atkin and Donaldson (2015),
who investigate price gaps across space in Ethiopia and Nigeria. The authors have barcode-level
data of the same product at different locations across the two countries and find that, in general,
prices become higher in areas further away from the supposed origin location of the product (ie.
the main port of entry for imported products, or the factory location for home-produced products).
They posit that the absolute price gap of a product sold at a location k to the price at the origin
location i is a function of transport costs t(·) and a markup charged by intermediaries with market
power µ(·):A.2

Pk � Pi = t (Xk) + µ (Xk) ,

Both t and µ are allowed to vary according to observable characteristics Xk of the selling location k.
I follow the evidence brought forward in Atkin and Donaldson, who analyse price gaps mainly

as a function of distance between origin and destination location. In particular, the authors estimate
a log-linear relationship between the two:

Pk � Pi = x log
�
Distance (miles)i,k

�

They estimate that (among trading pairs), this elasticity bx is 0.0248 in Ethiopia and 0.0254 in
Nigeria (Atkin and Donaldson (2015), Table 2, columns (2) and (5)). Interestingly, this elasticity is
mediated by market power: more remote areas get charged lower markups by intermediaries who
realise that inhabitants of these areas tend to be poorer and thus on a more elastic part of their
demand curve. The “pure” distance elasticity of transport costs t is larger: 0.0374 in Ethiopia and
0.0558 in Nigeria.

In the Fajgelbaum and Schaal (2020) framework, price gaps for a good n between locations are
A.2This corresponds to equation (2) of Atkin and Donaldson (2015), where I have relabeled their notation for transport costs

t as t, to avoid confusion with the endogeneous trade costs t in my model.
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given by the ad-valorem trade cost parameter tn
i,k:

Pn
k � Pn

i = Pn
i tn

i,k

=)
Pn

k � Pn
i

Pn
i

= tn
i,k

=)
bx log

�
Distance (miles)i,k

�

Pn
i

= tn
i,k

Hence, to “translate” the Atkin and Donaldson evidence on absolute (dollar-value) price gaps to my
object of inherent ad-valorem “iceberg” trade costs, I need to divide their predicted values of price
gaps by the origin price of goods in the barcode-level dataset. Atkin and Donaldson provide these
moments in their main text (page 24): the average product in their Ethiopia dataset costs Pi = 43
cents, while the average product in their Nigeria dataset costs 1.03 dollars. Putting this together, the
inherent distance elasticity of ad-valorem price gaps bx/Pi is 0.0248/0.43 = 0.0577 in Ethiopia and
0.0254/1.03 = 0.02466 in Nigeria.

However, in the Fajgelbaum and Schaal framework, trade costs are, furthermore, subject to con-
gestion and infrastructure effects, which are non-linear and endogeneous. In other words, the above
calibration would be correct for shipping 1 good at speed of 1km/hr across the network, or Q goods
at speed Qb/g. If the actually shipped quantity Q were higher (lower) than that in the current
observed equilibrium, my calibration would overstate (understate) this elasticity. Since Atkin and
Donaldson (2015) do not have access to data on quantities shipped (which is generally hard to come
by), we have no way to directly test for this.

I hence run a fixed-point algorithm to account for this: I treat the price gaps reported in Atkin
and Donaldson as equilibrium values, and adjust dt

i,k until I match them.
In particular, I start by setting dt

i,k,0 = bx/Pi from above, compute the current equilibrium, use
it to determine the model-implied ratio of R ⌘ (Qn

i,k)
b/Ig

i,k, update dt
i,k,`+1 = dt

i,k,`/R, and iterate
until convergence (ie. until equilibrium price gaps coincide with the ones reported in Atkin and
Donaldson). This is achieved at

dt,ETH
0 =

bxETH

PETH
i

· 3.915 =
0.0248 · 3.915

0.43
= 0.2258 for Ethiopia

dt,NGA
0 =

bxNGA

PNGA
i

· 0.2414 =
0.0254 · 0.2414

1.03
= 0.006 for Nigeria

Averaging the two estimates yields an elasticity of 0.1159, and hence an inherent trade cost term
of

dt
i,k = 0.1159 ⇥ log

�
Distance (miles)i,k

�

As a robustness exercise, I also use estimates the authors use to purge spatial price gaps of the
impact of market power. These can readily be read of columns (3) and (6) of Table 2 of their paper.
Using the same procedure as above, I obtain and average elasticity of

d
t,no-market-power
i,k = 0.3525 ⇥ log

�
Distance (miles)i,k

�

as an inherent trade cost term in a world where intermediaries have no market power.
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C.3 Additional details on historical analysis

To calibrate my model to historical roads data from Kenya, I use data from Burgess et al. (2015) and
Jedwab and Storeygard (2022). The Burgess et al. (2015) paper provides population, road expendi-
ture shares, as well as centroids of Kenyan districts and their ethnic affiliation.

Using digitised Michelin maps by Jedwab and Storeygard (2022), I merge each road segment
to their nearest district-centroid. Segments come with a roads classification (highway, paved, un-
paved, and so on), which I translate into average speeds using the same methodology as Jedwab
and Storeygard. This leaves me with a district-level measure of infrastructure density. To translate
this into edge-level values, I calibrate the amount of infrastructure Ij,k between districts j and k as the
average infrastructure density of j and k. I treat two districts as adjacent if the voronoi-diagrams
around their centroids touch.

I don’t have information on population and productivity of each of Kenya’s districts across time.
I do, however, have population information for 1962. I project this outward using country-wide
population totals (ie. assuming that the relative population share of each district stays constant over
time). I also calibrate productivity such that the country’s total production matches data on overall
GDP of Kenya in each year (using data on population totals and GDP from the World Bank). I
again treat the 4 most populous districts as producing their own variety, with the remaining districts
producing an “agricultural” fifth variety. Note that I do not include a foreign-country buffer around
Kenya, as I don’t have historical information on Tanzania’s, Uganda’s, (South) Sudan’s, Ethiopia’s,
or Somalia’s population and productivity.

Assuming all structural parameters from the rest of the paper (which are calibrated on much
more recent data) stay the same, this leaves me with enough to compute the optimally reallocated
and expanded network with mobile and immobile labor, at each point at which a digitised Michelin
map exists.

D Foreign aid and infrastructure discrimination

To investigate whether international development aid is quantitatively associated to my measure of
trade network inefficiency, I make use of two datasets of geo-referenced aid flows to Africa. Firstly,
AidData (2017) in cooperation with the World Bank, tracks over 5,600 lending lines from the World
Bank to African nations and reports precise coordinates of over 60,000 projects financed through
these funds, totalling more than 300 billion US dollars. The sample comprises all projects approved
between 1996–2014. As Strandow et al. (2011) describe, attributing projects to locations relies on
a double-blind coding procedure of various World Bank documents. Secondly, I explore patterns
from a similar database on Chinese aid projects by Strange et al. (2017). They resort to reports from
numerous local and international media outlets to track official and unofficial financing lines to over
1,500 projects worth 73 billion US dollars in the period 2000–2011.A.3

For the purpose of this study, I exclude aid projects with no clear-cut geographical target like
unconditional lending lines to the central government or assistance for political parties. I also ex-
clude flows with unknown or only vague information on eventual project location.A.4 I also ignore

A.3As Strange et al. point out, media reports are often based on initial press releases and do not necessarily follow up on
the eventual disbursement of every promised dollar. In that, the dataset is likely to capture Chinese funding commitments
rather than actual disbursements. Insofar as donors usually commit to more than they eventually deliver, these figures present
an upper bound of realised development assistance. Furthermore, while AidData (2017) claim their dataset on World Bank
projects to be exhaustive, the dataset on Chinese aid will naturally miss some unofficial flows, as significant parts of Chinese
involvement remain untracked.

A.4Specifically, I exclude all projects with a precision code of more than 3 – this corresponds to projects only identified at
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projects which were still under construction or otherwise not fully completed by the end of 2017.
Together, these steps truncate the World Bank sample by 35% and the China sample by 52%. In Fig-
ure A.8, I map the spatial distribution of aid projects from both remaining samples. I aggregate the
total value of aid disbursements from the remaining 10,786 World Bank projects and 1,420 Chinese
projects onto the grid cell level. Of the 10,158 grid cells of my sample, more than 21% have received
some form of assistance from either source.A.5

Do donor institutions identify places most in need of additional infrastructure? I employ various
indicators of aid provision in the standard grid cell level framework based on equation (6). I rely
on two measures to quantify the prevalence of foreign aid: the total value of aid disbursements to
a grid cell in 2011 US dollars and the number of distinct project sites within a given cell. I also
put additional emphasis on infrastructure by separately analysing variation in funds going only to
infrastructure projects in the transportation sector.

Table A.10 reports results. Columns (1–4) investigate the spatial distribution of World Bank assis-
tance. The estimates reveal seemingly opposing objectives between the Bank and the social planner.
Negative estimates in columns (1) through (4) imply that grid cells receiving more World Bank as-
sistance score lower on the discrimination index Li. Every additional million US dollar flowing into
an area is associated with the grid cell being about 0.004 standard deviations too well off. Focusing
on transport sector projects only, results are qualitatively similar, yet much stronger. The average
transport infrastructure project size of around 3 million US dollars goes to grid cells which stand
to lose 0.005 standard deviations of welfare under the reallocation exercise. Similar effects hold on
the extensive margin reported in columns (3) and (4). Columns (5–8) present very similar results
for Chinese aid. Chinese assistance also systematically flows into privileged cells, with intensive
margin point estimates of the association ranging between a quarter and a tenth of the World Bank
results. On the extensive margin, more Chinese projects are similarly associated with higher trade
network imbalances. For each new development site financed by China in a certain cell, the social
planner intervenes and allocates about 0.03-0.04 standard deviations of welfare away from the cell
(columns 7–8).

These relationships should by not interpreted as causal effects. Since the placement of aid projects
is not random, numerous other channels could account for the patterns depicted in Table A.10. The
donor’s investment strategies might for example be motivated by increasing returns to scale. If the
World Bank believes in an environment with multiple equilibria, where small initial investments set
in motion a dynamic of spillover externalities, labour migration, and follow-up investments, it is
often the right decision to fund projects in places that will not immediately harness their full capa-
bilities (Krugman, 1991; Duranton and Venables, 2017). These investments will necessarily appear
inefficient in promoting optimal trade today, yet spur transformative development tomorrow (see
Michaels et al., 2021). Embedding the reallocation exercise in a New Economic Geography frame-
work of increasing returns and labour mobility might be a valuable extension to better evaluate
specific place-based policies.

province-level or above. The remaining entries are geo-coded either exactly (61%), within a 25 kilometre radius (4%), or with
municipality-level precision (35%) (Strandow et al., 2011)

A.5All disbursements are adjusted to 2011 US dollars. For projects with multiple sites, I assume total disbursement value
to be split evenly between sites. On average, these cells receive aid volumes of more than 30 million US dollars. The area
receiving the most total World Bank funding is the grid cell containing Uganda’s capital Kampala. The biggest beneficiary
of Chinese development assistance is a grid cell in the south of Congo-Kinshasa, where Chinese funds of almost 5 billion US
dollars helped construct a vast copper mining infrastructure.
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Table A.10: International aid and local infrastructure discrimination

L: World Bank L: China

(1) (2) (3) (4) (5) (6) (7) (8)
Total disbursements (mil $) -0.00187⇤⇤⇤ -0.0000909

(0.000635) (0.0000684)

Total transport sector disbursements (mil $) -0.00159 -0.000256⇤
(0.00180) (0.000133)

Number of projects -0.0116⇤⇤⇤ -0.0127⇤⇤⇤
(0.00253) (0.00450)

Number of transport sector disbursements -0.0147⇤⇤⇤ -0.0278⇤⇤
(0.00367) (0.0133)

Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes Yes Yes
N 10158 10158 10158 10158 10158 10158 10158 10158
R2 0.764 0.764 0.765 0.764 0.764 0.764 0.764 0.764

Grid cell level estimations of equation (6) with z-scored local infrastructure discrimination L̃i as dependent variable and different measures
of foreign aid flows into grid cells as explanatory covariates. Columns (1–4) investigate World Bank assistance. Column (1) analyses total
disbursement value from World Bank projects approved from 1996–2014 in 2011 US dollars, which were completed by 2017. (2) only
uses a subset of projects in the transport sector. (3)–(4) use the same data but focus on the number of distinct project sites within each
grid cell. Columns (5–8) repeat the same estimations, but with data on Chinese aid projects between 2000–2011. Geography controls,
consisting of altitude, temperature, average land suitability, malaria prevalence, yearly growing days, average precipitation, indicators
for the 12 predominant agricultural biomes, indicators for whether a cell is a capital, within 25 KM of a natural harbour, navigable river,
or lake, the fourth-order polynomial of latitude and longitude, and an indicator of whether the grid cell lies on the border of a country’s
network. They also include population, night lights, and ruggedness. Chinese aid data are more likely to reflect commitments rather than
actual disbursements. Standard errors are clustered on the 3 ⇥ 3 degree level and are shown in parentheses.
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