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Figure A.1: Map of Study Area With 1km Hexagonal Grids and TransJakarta Bus Stations

BRT stations

non-BRT stations

Hexagonal 1000 meter grid

Jakarta DKI

Study area

Notes: This figure shows the location of all TransJakarta stations (BRT in red circles, non-BRT in yellow squares) as of March 2020, together with the
hexagonal grid with distance 1000 meters between centroids. The thin black link is the boundary of the Special Capital Region of Jakarta (Jakarta
DKI), whereas the thicker gray boundary also includes the adjacent cities of (in counterclockwise order) Tangerang, South Tangerang, Depok, and
Bekasi.
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Figure A.2: Robustness With 500m Square Grids: Bus Ridership Impacts of BRT and
Non-BRT Network Expansions (PPML)

(a) Event Types 1 and 2: New Direct Route

(b) Event Type 3: Additional Busses (direct)

Notes: This graph replicates Figure 2 using 500-meter square grids instead of 1km hexagonal grids.
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Figure A.3: Robustness With 2000m Square Grids: Bus Ridership Impacts of BRT and
Non-BRT Network Expansions (PPML)

(a) Event Types 1 and 2: New Direct Route

(b) Event Type 3: Additional Busses (direct)

Notes: This graph replicates Figure 2 using 2000-meter square grids instead of 1km hexagonal grids.
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Figure A.4: Robustness 500m Square Grids: Aggregate Trip Volume Impacts of BRT
and Non-BRT Network Expansions

(a) Event Types 1 and 2: New Direct Route

(b) Event Type 3: Additional Busses (Direct)

Notes: This graph replicated Figure 3 using 500m square grids.
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Figure A.5: Varying the Level of Aggregation: Impact of Network Expansion on Bus Rider-
ship

Notes: This graph plots the Postodt coefficients from our main specification with bus ridership as the
outcome, for all six events, and for the three aggregation levels we consider: 500-meter square grids, 1000-
meter hexagons, and 2000-meter square grids.
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Figure A.6: Demand Estimation Model Fit (Targeted Moments)

(a) Event Type 1: New Direct Route (Not Quicker)

(b) Event Type 2: New Direct Route (Quicker)

(c) Event Type 3: Additional Busses (Direct)

Notes: These figures overlay the event study analysis from Figure 2 with the same analysis on model-
predicted ridership using the model estimated in Table 4, column 2. For model-predicted ridership, we use
weighted least squares on log model ridership. All regressions have origin-week and destination-week fixed
effects as in equation (1).
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Figure A.7: Demand Estimation Model Fit Over Time

(a) BRT Ridership

(b) Non-BRT Ridership

Notes: These figures report actual and model-predicted total ridership over the entire TransJakarta network
over time at the weekly level, based on the model estimated in Table 4, column 2.
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Figure A.8: Demand Estimation Model Fit for Non-BRT Route Launch

Notes: This figure reports actual and model-predicted ridership after the launch of the first non-BRT con-
nection (direct or transfer). To construct this figure, we consider the 74 origin-destination pairs (using 1km
hexagonal grids) that are part of the reduced form analysis and that first become connected through non-
BRT after 2017, when our non-BRT ridership data begin. We then aggregate total bus ridership by semester
after the route launch. (Note, the sample of origin destinations pairs changes by semester. However, 86% of
the origin destination pairs appear in semester 3 after the route launch.). We then plot the inverse hyperbolic
sine of total semester ridership in the data and in the model, based on the model estimated in Table 4 column
2.
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Figure A.9: Moment Dependence on Parameters (Jacobian)

Notes: This figure shows how, in the model, the moments we use in estimation (rows) vary as a function
of parameters (columns). Each graph shows how the value of one of the moments mj ∈ {α1B , α2B , α3B ,
α2B,duration} depends on one of the parameters θi ∈ {αBRT

wait , αtime, µ
BRT
transfer, η

BRT}. For each plot, we use 10
values of θi that bracket the estimated value θ̂i. The thick blue line plots the model’s moment value mj(θi).
The green vertical lines indicate the estimated parameter θ̂i (column 2 in Table 4). The red horizontal lines
indicate mdata

j , the value of the moments in the data.
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Figure A.10: Jakarta Geography Used for Optimal Networks

Notes: This map prints the geographic environment with 2km×2km grid cells used to compute optimal
networks. The central DKI area is in light blue. The size of each circle is proportional to the number of
trips that depart from that grid cell.
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Figure A.11: Welfare and Ridership Over the Course of the Simulated Annealing Algorithm

(a) Welfare
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(b) Ridership
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Notes: Each line shows the progression of welfare (panel a) and ridership (panel b) throughout one of the
200 runs of the simulated annealing algorithm.
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Figure A.12: Optimal Network Examples

(a) (b)

(c) (d)

Notes: This figure depicts four additional examples of draws from the planner’s distribution of optimal
networks. Each is obtained from an independent simulated annealing run.
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Figure A.13: Distributions of Optimal Network Properties
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Notes: Each graph plots the kernel density graph of a specific network characteristic, for the final network
from the simulated annealing algorithm, over the 200 parallel simulated annealing runs. The vertical line
plots the measure for the current TransJakarta network for comparison.
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Figure A.14: Average Bus Occupancy in Current and Optimal Networks

(a) Edge-level Bus Occupancy (Current Network)

Average people on the bus

80
50
20
10
5

(b) Edge-level Bus Occupancy (Single SA Run)

Average people on the bus

80
50
20
10
5

(c) Distribution (Current Network)

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

Edge occupancy

D
en

si
ty

Penalty Cutoff

(d) Distribution (Single SA Run)
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Notes: This figure depicts edge-level bus occupancy, defined as the average number of riders on a typical
bus traveling across an edge, for the current TransJakarta network (a) and one of the sampled networks (b).
Edges on which TransJakarta has built infrastructure for BRT travel are denoted by bright pink underlay.
To construct this graph, we use model-implied ridership percentages to compute how many people take each
bus line and where they get on and off the line. We assume busses run for 17 hours each day (5AM-10PM).
For each edge, the graph displays the average occupancy over all the lines using that edge. Figures (c) and
(d) plot the distribution of edge-level occupancies, as well as the cutoff B of 84 people per bus. See Appendix
A.7.2 for details.
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A.2 Appendix Tables

Table A.1: Number of Transjakarta Routes by Type

(1)
No. of routes

BRT 43
Non-BRT (inner city) 84
Non-BRT (outer city) 12
Royaltrans 13
Mikrotrans 45
Others 17
Total 214

Notes: A snapshot of the TransJakarta network in August 2019.
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Table A.2: BRT Route Launch Order: Balance on Baseline Geographical Variables

(1)
BRT

β RI p-value

Outcome Variables
Total length along the path in meters -420.38 0.62
# of stations on new route -1.42* 0.09
Distance from the nearest station on the new route to Sudirman CBD (in km) 0.35 0.38

(0.01)
Average distance across stations on the new route to Sudirman CBD (in km) 0.33 0.28

(0.01)
# of existing baseline stations on the new route -1.41 0.19

(0.02)
Share of existing baseline stations on the new route 0.01 0.82

(0.00)
# of connecting baseline routes on existing stations on the new route (avg) 0.03 0.75

(0.00)
# of connecting baseline routes on the new route in total -0.07 0.89

(0.01)
Avg daily ridership across existing baseline stations first 7 days of Jan2016 -81.75 0.19

(1.14)

Median Initial Planned Buses Allocation (at launch) -1.11*** 0.01
(0.01)

N 28

Notes: This table reports results from the OLS regression Outcomei = βWeekLaunchi+ϵi and the coefficient
β and its robust SE are displayed. The coefficients β are multiplied by 52 to be interpreted as “a route
launched one year later has...”. The randomization inference (RI) p-value of the t-test is computed using
ritest in Stata, with 1,000 permutations without replacement.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.3: Robustness with 500m Square Grids: Impact of Network Expansion on Travel
Time, Wait Times, and Bus Ridership

(a) BRT

log Min Travel Time log Bus/hr (origin) Bus Ridership

(1) (2) (3) (4) (5) (6) (7) (8) (9)

E1: New Direct Line 0.028*** -0.039 0.162***
(0.008) (0.023) (0.024)

E2: New Direct Line (quicker) -0.272*** 0.069* 0.245***
(0.025) (0.034) (0.032)

E3: Additional Busses -0.018* 0.286*** 0.115***
(0.008) (0.023) (0.020)

Orig × Dest FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS OLS OLS OLS PPML PPML PPML

Mean outcome 31.9 43.3 11.9 33.6 27.1 20.0 69.4 48.3 122.2
Median outcome 29.4 41.2 9.9 26.8 21.5 16.9 32.4 21.2 48.1
Unique origin x destination pairs 29,518 29,657 8,027 29,518 29,657 8,027 29,518 29,657 8,027
Unique origins 185 185 190 185 185 190 185 185 190
N 4,962,030 4,964,566 1,202,193 4,962,030 4,964,566 1,202,193 4,962,030 4,964,566 1,202,193
R2 0.982 0.980 0.998 0.928 0.926 0.998

(b) Non-BRT

log Min Travel Time log Bus/hr (origin) Bus Ridership

(1) (2) (3) (4) (5) (6) (7) (8) (9)

E1: New Direct Line 0.023 0.283*** 0.785***
(0.012) (0.036) (0.187)

E2: New Direct Line (quicker) -0.715*** 0.226*** 1.356***
(0.072) (0.032) (0.105)

E3: Additional Busses -0.085*** 0.427*** 0.359***
(0.015) (0.015) (0.103)

Orig × Dest FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS OLS OLS OLS PPML PPML PPML

Mean outcome 27.8 50.7 12.2 10.3 9.9 7.3 12.0 2.9 6.4
Median outcome 21.4 49.4 10.5 8.5 7.1 6.4 0.0 0.0 0.0
Unique origin x destination pairs 6,656 6,749 3,890 6,656 6,749 3,890 6,656 6,749 3,890
Unique origins 110 110 139 110 110 139 110 110 139
N 755,706 765,671 435,225 755,706 765,671 435,225 755,706 765,671 435,225
R2 0.993 0.990 0.998 0.967 0.968 0.992

Notes: Version of Table 1 using 500-meters square grids. The two panels report results for BRT and non-BRT
events, respectively. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table A.4: Robustness With 2000m Square Grids: Impact of Network Expansion on
Travel Time, Wait Times, and Bus Ridership

(a) BRT

log Min Travel Time log Bus/hr (origin) Bus Ridership

(1) (2) (3) (4) (5) (6) (7) (8) (9)

E1: New Direct Line 0.017 -0.042 0.126***
(0.011) (0.034) (0.022)

E2: New Direct Line (quicker) -0.298*** 0.063 0.151***
(0.036) (0.048) (0.029)

E3: Additional Busses -0.092** 0.348*** 0.122***
(0.028) (0.069) (0.036)

Orig × Dest FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS OLS OLS OLS PPML PPML PPML

Mean outcome 37.5 46.3 16.2 47.0 37.5 20.4 465.3 384.7 841.3
Median outcome 36.7 45.1 12.6 38.9 27.6 16.9 315.3 246.5 459.1
Unique origin x destination pairs 3,868 3,869 1,405 3,868 3,869 1,405 3,868 3,869 1,405
Unique origins 68 68 70 68 68 70 68 68 70
N 676,039 672,111 205,889 676,039 672,111 205,889 676,039 672,111 205,889
R2 0.984 0.979 0.996 0.940 0.938 0.996

(b) Non-BRT

log Min Travel Time log Bus/hr (origin) Bus Ridership

(1) (2) (3) (4) (5) (6) (7) (8) (9)

E1: New Direct Line 0.038* 0.270*** 0.547*
(0.017) (0.053) (0.222)

E2: New Direct Line (quicker) -0.655*** 0.152* 1.660***
(0.119) (0.059) (0.437)

E3: Additional Busses -0.121** 0.388*** 0.264
(0.039) (0.022) (0.243)

Orig × Dest FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS OLS OLS OLS PPML PPML PPML

Mean outcome 45.6 66.2 20.1 10.4 9.2 6.6 117.7 27.6 55.7
Median outcome 32.8 66.2 19.3 10.6 7.8 6.3 25.8 0.0 14.1
Unique origin x destination pairs 422 435 156 422 435 156 422 435 156
Unique origins 16 16 16 16 16 16 16 16 16
N 53,315 54,412 19,078 53,315 54,412 19,078 53,315 54,412 19,078
R2 0.989 0.983 0.998 0.942 0.944 0.990

Notes: Version of Table 1 using 2000-meters square grids. The two panels report results for BRT and
non-BRT events, respectively. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table A.5: Robustness With 500m Square Grids: Impact of Network Expansion on Aggregate
Trip Volume

(a) BRT
log Min Travel Time log Bus/hr (origin) Bus Ridership All trips

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

E1: New Direct Line 0.047*** -0.134*** 0.106*** -0.057
(0.006) (0.027) (0.018) (0.119)

E2: New Direct Line (quicker) -0.212*** -0.123*** 0.199*** 0.046
(0.027) (0.028) (0.027) (0.084)

E3: Additional Busses 0.012 0.235*** 0.094* -0.007
(0.032) (0.067) (0.040) (0.314)

Orig × Dest FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS OLS OLS OLS PPML PPML PPML PPML PPML PPML

Mean outcome 31.6 39.7 11.8 34.1 33.0 15.2 83.4 53.8 98.3 237.6 176.5 572.1
Median outcome 28.7 38.6 10.1 29.4 28.7 16.9 38.6 27.8 63.0 0.0 0.0 0.0
Unique origin x destination pairs 21,813 21,852 3,960 21,813 21,852 3,960 21,813 21,852 3,960 21,813 21,852 3,960
Unique origins 156 156 123 156 156 123 156 156 123 156 156 123
N 1,850,929 1,854,359 310,496 1,850,929 1,854,359 310,496 1,850,929 1,854,359 310,496 1,850,929 1,854,359 310,496
R2 0.988 0.986 0.999 0.949 0.949 1.000

(b) Non-BRT
log Min Travel Time log Bus/hr (origin) Bus Ridership All trips

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

E1: New Direct Line 0.023 0.268*** 0.736*** -0.239
(0.015) (0.035) (0.216) (0.177)

E2: New Direct Line (quicker) -0.737*** 0.235*** 1.276*** 0.071
(0.084) (0.033) (0.147) (0.129)

E3: Additional Busses -0.088*** 0.342*** 0.394** -0.223
(0.023) (0.018) (0.128) (0.138)

Orig × Dest FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS OLS OLS OLS PPML PPML PPML PPML PPML PPML

Mean outcome 28.5 46.5 11.6 10.3 10.2 7.6 10.3 3.3 9.4 446.4 704.3 1238.0
Median outcome 22.1 46.7 10.1 8.5 7.8 7.8 0.0 0.0 0.0 0.0 0.0 0.0
Unique origin x destination pairs 4,728 4,770 2,481 4,728 4,770 2,481 4,728 4,770 2,481 4,728 4,770 2,481
Unique origins 90 90 110 90 90 110 90 90 110 90 90 110
N 371,173 374,650 173,907 371,173 374,650 173,907 371,173 374,650 173,907 371,173 374,650 173,907
R2 0.996 0.993 0.998 0.979 0.980 0.996

Notes: This table replicates Table 2 using 500-meter square grids instead of 1000 hexagonal grids. The two
panels report results for BRT and non-BRT events, respectively. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table A.6: Heterogeneity by Poverty Level: Impact of Network Expansion on Bus Ridership

Bus Ridership

(1) (2) (3) (4) (5) (6)

New Direct Line 0.215*** 0.326*** 0.957*** 1.416**
(0.030) (0.057) (0.250) (0.453)

New Direct Line x High Poverty Origin -0.095** -0.052 -0.078 0.500
(0.032) (0.061) (0.147) (0.429)

E3: Additional Busses 0.074* 0.329
(0.036) (0.236)

E3: Add’l Busses x High Poverty Origin -0.049 0.658**
(0.034) (0.216)

Estimator PPML PPML PPML PPML PPML PPML

Event Type BRT 1 BRT 2 BRT 3 non-BRT 1 non-BRT 2 non-BRT 3
Median outcome pre x High Poverty 67.8 38.4 84.3 0.0 0.0 0.0
Median outcome pre x Low Poverty 50.0 39.6 104.6 0.0 0.0 0.0
N 3,154,672 3,143,019 793,965 306,722 313,994 144,763
R2

Notes: This table reports heterogeneity by whether the origin grid is high- or low-poverty for the bus ridership
impacts in Table 1. We use poverty and population data at the kelurahan level from (SMERU, 2014) and
PODES 2010, which we assign at the grid cell level based on surface area intersection. The interaction
variable is a dummy for within-sample above median poverty rate. * p < 0.05, ** p < 0.01, *** p < 0.001

Table A.7: Moment Dependence on Parameters (Jacobian)

Event 1 (α1B) Event 2 (α2B) Event 3 (α3B)

αBRT
wait 1.37 -2.62 0.27

αtime 0.01 10.72 0.52

µBRT
transfer -0.16 -0.46 -0.02

Notes: The (i, j) entry in this matrix reports how the j-th moment varies locally in the model when the
i-th parameter changes, namely ∂mj(θ)/∂θi, for moments mj ∈ {α1B , α2B , α3B} and parameters θi ∈
{αBRT

wait , αtime, µ
BRT
transfer}.
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Table A.8: Sensitivity Measure: Estimated Parameter Dependence on Moment Values

Event 1 (α1B) Event 2 (α2B) Event 3 (α3B)

αBRT
wait 4.9 -2.2 49.3

αtime -4.1 2.4 38.0

µBRT
transfer -15.6 -2.3 52.5

Notes: The (i, j) entry in this matrix reports the (Andrews et al., 2017) sensitivity measure
(ŜEi)

−1∂θ̂i/∂m
data
j where the scaling factor ŜEi is the estimated standard error of θ̂i.

Table A.9: Optimal Networks Local Comparative Statics

Comparative Statics (Local Changes)

Statistic
Current
Network

Baseline
Optimal

Wait Time
dF ∗/dαwait

Time on Bus
dF ∗/dαtime

Transfer
dF ∗/dµtransfer

Panel A: Coverage measures

Locations with a station (share) 0.42 0.66 -0.08 -0.065 0.0061
[-0.14; -0.028] [-0.2; 0.062] [-0.0065; 0.02]

Location pairs connected by bus (share) 0.12 0.39 -0.075 -0.014 -0.0013
[-0.14; -0.013] [-0.19; 0.18] [-0.017; 0.016]

Total network mileage (in km) 543.95 713.87 -78.45 -99.87 -0.62
[-157.11; -6.095] [-301.061; 84.056] [-16.77; 16.24]

Panel B: Speed measures

Bus time relative to quickest possible bus route 1.36 1.35 0.16 0.76 -0.14
[-0.25; 0.54] [-0.053; 1.58] [-0.25; -0.054]

Panel C: Directness measures

Connected directly (share of all connected pairs) 0.21 0.12 0.019 0.021 -0.01
[-0.0035; 0.042] [-0.024; 0.062] [-0.021; -0.002]

Notes: This table reports how network shape measures (rows) change locally as a function of parameter
changes (columns). It replicates Table 6 for local parameter changes, using the sample analogue of equation
(7). Column 3 reports local changes to both αBRT

wait and αnon-BRT
wait , column 5 reports local changes to both

µBRT
transfer and µnon-BRT

transfer . Note that a positive change in the transfer shifter corresponds to a lower transfer
penalty. 90% bootstrapped confidence intervals (columns 3-5) in parentheses.
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A.3 Data Processing

A.3.1 Bus GPS Data Processing

This section explains how we process bus GPS data to find bus station arrival times, which
we use when describing the wait time distribution and when assigning bus transactions to
bus stations. We use GPS data every 5 or 10 seconds available for most TransJakarta busses
between January 2017 and March 2020. We also use bus trip logs entered manually by
bus dispatchers. For each trip, this data contains the bus code, the bus route code (with
direction), and the trip start time. 2,798 TransJakarta busses appear in the GPS data.

Combined data on GPS and trip logs is significantly better starting in 2018. In 2017,
22.2% of bus days contain both GPS data and trip logs, 76.2% contain only GPS data but
no logs, and the rest contain only trip logs without GPS data. However, in 2018 - March
2020, 70.7% of bus days contain both GPS data and trip logs, 22.8% contain only GPS
data but no logs, and the rest contain only trip logs without GPS data.

We developed three algorithms to identify when a bus arrives at a given bus station.
When both GPS data and trip logs are available, we map match the bus GPS locations to
the path of the bus route (from separate data), starting from the trip start time recorded
in the trip log, and find arrival times for all bus stations along that route. (The algorithm
automatically identifies bus trips where the “return” trip log is missing, which happens 15.4%
of the time.)

When only GPS data is available, the algorithm proceeds in two steps. First, given a
bus and a date, it ranks bus routes in decreasing order of overlap with the GPS traces for
that bus day and generates a set of candidate routes where the traces overlap at least 30%
with the route. Second, the algorithm map matches the GPS traces to the best-fit bus route,
trying multiple candidates, starting from the first GPS point that is near to the first station
of a candidate bus route.

When only trip log data is available, the algorithm proceeds in two steps. First, we
predict station arrival time as a function of trip start time, bus route, and time of the day.
We estimate this model using the output of the first algorithm for the same route, on bus-
days when both GPS and trip log data is available. Figure A.15 shows that we achieve high
accuracy using this model. Second, we apply these predicted times using the trip start time
from the log.
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Figure A.15: Accuracy of Predicting Station Arrival Time Based Only on Trip Start Time

(a) Relative Error (b) Absolute Error

We end up with a total of 7,315,854 trips out of which 5,568,890 (76.1%) are identified
when both GPS data and trip logs are available, 859,776 (11.8%) are identified when only
GPS data is available and the remaining 12.1% are identified when only trip log data is
available.

A.3.2 Bus Travel Times

In this section, we describe how we compute travel times between an origin station o,
a destination station d, along a route r. These travel times are used in the reduced form
analysis to compute bus route travel times for defining Events 1 and 2, and in the model to
characterize the bus network choice set of any given traveler.

For every triplet (r, o, d) we consider all trips along r and the time they take to go from
o and d. We then take the median travel time within this set, over all trips between 7 AM
and 7 PM in our study period.

Figure A.16 shows that there is only a very small amount of variation in “delay” (median
travel time per kilometer, or inverse speed) for trips starting at different times of the day
between 7 AM - 7 PM. The variation is even smaller for BRT routes. Moreover, we can also
observe that delay is mostly stable over the years in our sample. This supports our choice
of using medians of travel times of trips starting between 7 AM - 7 PM, over the entire data
period (January 2017 - March 2020). Travel time and delay in different years are strongly
correlated after including route, origin and destination fixed effects (Table A.10).
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Figure A.16: Bus Travel Delay by Departure Time and Year

Figure Notes: This figure reports median delay (inverse speed, in minutes per km) by departure time,
separately for BRT routes and for non-BRT routes using data from January 2017 - March 2020 for routes
that were active throughout this period. To construct this figure, we assign each trip to 5-minute bins by
their departure time at first station on the route. We then find the time taken by the bus to complete each
trip and the distance traveled for the entire route (start to end). Using this, we calculate the inverse speed
for each trip (time/distance). Within each 5-minute bin, we finally plot the median of inverse speed of trips
throughout the day, grouping the trips by year.

Table A.10: Bus Travel Time Correlation Across Time

Log(Median
Delay)
2017

Log(Median
Delay)
2018

Log(Median
Travel Time)

2017

Log(Median
Travel Time)

2018
(1) (2) (3) (4)

Log(Median Delay) 2019 0.716∗∗∗ 0.794∗∗∗
(0.048) (0.038)

Log(Median Travel Time) 2019 1.031∗∗∗ 1.009∗∗∗
(0.007) (0.002)

Constant 0.368∗∗∗ 0.222∗∗∗ -0.193∗∗∗ -0.083∗∗∗
(0.062) (0.047) (0.043) (0.018)

R2 0.476 0.685 0.961 0.983
N 26990 38624 26990 38624

Table Notes: We organize the data at the route-origin-destination level. The outcomes variables are the log
of median delay (inverse speed) and log of median travel time. Standard errors are clustered three-way by
route, origin and destination, and reported in parentheses: * p < 0.05, ** p < 0.01, *** p < 0.001
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A.3.3 Bus Wait Time Distribution

In the model, we assume that wait times are exponentially distributed. In this section
we analyze how wait times for different TransJakarta routes are distributed in reality, using
the GPS data from 2019.

We first calculate bus headways (difference in minutes between two consecutive buses) for
every station, route, and direction. Then, we calculate the frequency of headway occurrence
by route and minute. Assuming that TransJakarta passengers are “non-planning” and thus
arrive at bus stations at a (locally) constant rate, we calculate the implied histogram of wait
times by taking the reverse cumulative total of headway frequency. We compute the wait
time distribution for 45 routes (18 BRT and 27 non-BRT) that have only two main route
versions (i.e. where the top two trip variants account for > 95% of all trips on that route).

Panels A and B in Figure A.18 plot the wait time distribution for non-BRT route 1E. The
wait time distribution is approximately exponential, except for wait times over 30 minutes,
where the empirical distribution puts lower weight than the exponential. Panel B plots
results for all the routes in our sample, showing that there is a tight linear relationship
between a route’s mean wait times and the coefficient of variance of wait time. BRT and
non-BRT routes share the same relationship. In other words, BRT routes are not less (or
more) uncertain than non-BRT routes, conditional on average wait time.

Figure A.17: Sample Arrival Time Monitor at a TransJakarta Station

Notes: During the study period, all BRT bus stops were equipped with screens that displayed real-time
estimated bus wait times. (The estimates were based on real-time bus GPS location data.)
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Figure A.18: Wait Time Distribution Within and Across Routes

(a) Wait Time Distribution (route 1E) (b) Wait Time Q-Q Plot (route 1E)

(c) Wait Time Reliability on BRT and Non-BRT
Routes (d) Within-Route Reliability

Notes: Panel (A) and (B) report the wait time distribution for non-BRT route 1E. To create these graphs,
we calculate bus headways (defined as the duration in minutes between two consecutive buses of the same
route and direction at a particular station) using the bus GPS data. To obtain the wait time distribution
from the headway distribution, we assume that passengers arrive at the station at a constant rate. In panel
(A), we fit an exponential distribution to the empirical wait time distribution. Panel (C) reports the mean
of wait time (in minutes) and the coefficient of variation of wait time, separately for BRT routes and for
non-BRT routes. Panel (D) reports the coefficient of variation of wait time over position along the route (0
for first station, 1 for last station). For all panels, we use data from January to October 2019 and restrict
the sample to only include arrival times during morning peak hours (8 AM-12 PM). Each Transjakarta route
may have several route variants that differ slightly in length and stations reached. Therefore, for panels (C)
and (D), we restrict the sample to routes where two trip variants account for above 95% of all trips on that,
consisting of 45 routes (18 BRT and 27 non-BRT routes).
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A.3.4 TransJakarta Ridership Data Processing

We use two main TransJakarta ridership data sources. First, we use transactions (“taps”)
in BRT bus shelters, where passengers pass through turnstiles to enter the bus shelter. In
theory, passengers also need to “tap out” when they exit a bus shelter. This is only enforced
in 35.9% of bus shelters (accounting for 34.0% of shelter ridership).

Second, we use transaction data from non-BRT busses. When a passenger gets on the
bus from a (non-BRT) bus station on the side of the road, they pay inside the bus using their
card or cash. When a passenger uses cash, the bus attendant uses their own card on the
card reading machine. In 2019, 57% of transactions were cash. To assign these transactions
to bus station, we use the bus station arrival time from the GPS or trip log data (section
A.3.1).

Origin-Destination Ridership Flows. To construct origin-destination ridership flows
at each point in time, we proceed in several steps. We focus on a sample of cards for which
we observe ridership behavior over time. At each step, we construct weights assuming that
the sample of cards and transactions that we use is representative.

First, we drop “administrative” cards that are likely used by bus attendants or other
TransJakarta employees. We label a card as administrative on a given day if it is used
repeatedly throughout the day on the same bus (for non-BRT transactions), or at a BRT
shelter. Administrative cards account for 2.1% of all BRT shelter transactions, and 63.2%
of all non-BRT bus transactions. We assume that travel behavior for non-admin cards is
representative of all trips in the system.

Second, we process “serial” taps. We combine consecutive taps using the same card into a
single transaction, likely capturing groups traveling together and using a single card. 8.1%
of transactions have two or more consecutive taps.

We exclude 15 non-BRT routes from ridership coding for reasons related to the way
payments were made. Each non-BRT bus accepts payments with smart cards provided by
a specific bank. We lack detailed micro-transaction data corresponding to one of the banks.
Overall, tap data from dropped routes accounts for 14.96% of total tap data in 2017-2020.
Coverage is 44.11% of total routes in 2017 and 72.14% in 2020.

Algorithm to Infer Trip Destination and Validation. Ideally, we want to determine
a commuter’s origin-destination based on the tap-in and tap-out locations of their trip.
However, tap-out information is not always available across all routes and stations in Tran-
sJakarta. Commuters were not required to tap-out on non-BRT routes, and tap-out was
enforced only at some BRT bus stops. Given these limitations, we developed an algorithm
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to infer a commuter’s destination for each ridership tap-in. The algorithm consists of three
main rules for assigning a trip’s destination. The first rule is to use the actual tap-out lo-
cation as the destination, when the tap-out occurs within 4 hours after the tap-in. For the
second rule, we proxy for the destination using the next trip’s tap-in, if that next trip takes
place on the same day or the next day. For the third rule, for each smart card, each month,
we computed the top 2 stations with the most taps. If the trip origin is one of the top 2
stations, we proxy for the trip destination using the other top 2 stations. This method is
only applied for frequent commuters, defined as those with more than 10 taps in a month
and more than 75% of total taps located within its top-2 stations.

We validate the algorithm by comparing ridership flow destination shares originating
from station i towards station j (destination) using data with only tap-in entry (algorithm)
and data with both tap-in and tap-out entry (actual). Figure shows that the two measures
are highly correlated.

Figure A.19: Comparison of Actual and Inferred (o, d) Ridership Shares
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A.3.5 Veraset Smartphone Location Data Trip Processing

We use the smartphone trip processing algorithm from Kreindler (2023) to convert raw
GPS data into individual trips and common location for each device in the data.

For each individual i, the algorithm first classifies individual trips and “stays,” periods of
time when the device is observed to be stationary in a given area. Then, the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) is used to cluster all locations for
any given devices. The most common cluster is labeled as “home.”

The sample of trips used in the analysis is all weekday trips starting and ending at a
known locations (i.e. locations classified by DBSCAN as belonging to a cluster), excluding
trips starting before 5AM or after 11PM. We also drop trips that are unusually long or short
(in both duration and distance), “swiggly” trips (where ratio of the largest distance between
any two points on the trip to path length is less than 0.3), and “short loop” trips (trips that
are less than 2km where the ratio of origin-destination distance to path length is less than
0.3).

Given the selection concerns when using smartphone location data (Blanchard et al.,
2021), we examine how representative the users in our data are of the general Jakarta pop-
ulation. First, we compare the distribution of users’ home locations obtained from the data
to that of residential population from the PODES survey (Figure A.20). The number of
devices in our data with home locations in each desa is correlated with populations in the
desa, suggesting that distribution of Veraset devices is consistent with population distribu-
tion. However, the coverage of our data (number of devices per total population) is slightly
lower in areas with higher population density and proportion of population under poverty.

We construct two main data sets using the Veraset trips data. First, we construct a
panel of trip flows at the origin grid by destination grid by week level. Each week, for each
device in the data, we re-weight all its weekday trips that week to represent a single typical
weekday. (This is essentially using inverse weights given by the number of weekdays when
we observe the decide, except that we also account for partial days.) We also use a single
overall adjustment factor such that the sum of all device weights equals approximately 14
million, the number of individuals over 15 years old in the study area. To construct trips,
we consider any individual-day with sufficient GPS data frequency and include all the trips
that can be identified in the data on that day, and use the trip detection algorithm from
Kreindler (2023).

Second, we construct a cross-section of typical (o, d) trip flows throughout the period.
We apply the same procedure as for the panel, except that we first pool all data for the
entire two year period.
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Figure A.20: Binned Correlation Between Veraset Devices and Residential Population
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Notes: Each observation is an urban neighborhood (kelurahan or desa), N = 538. Population data is from
the 2011 PODES survey, the most recent source for population at this level of geographical detail. For each
desa, we count all devices which have their “home” location assigned inside the desa.
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Figure A.21: Representativeness of the Veraset Trip Data
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(b) Poverty
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Notes: Binscatter plots analyzing the representativeness of the Veraset trip data at the kelurahan level.
The sample excludes kelurahans below the 10th percentile of the distribution of PODES population. These
locations tend to represent commercial or leisure areas. In these locations, the ratio of Veraset to PODES
population is high. Panel A compares the ratio of Veraset home locations in a kelurahan to the kelurahan’s
population density. Panel B uses a poverty indicator from SMERU (2014).
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A.4 Reduced Form Estimation

This section describes the differences-in-difference specifications.
For BRT events, we define PostiBodt, i = 1, 2, to be a time-varying dummy for the new

direct connection between BRT grid cells o and d having been switched on in the past
10 months.52 The coefficient αiB in equation 1 captures the overall effect of a new direct
connection being added between o and d in the first 10 months after its launch. The sample
of observations is all odt that have a direct or transfer connection between BRT grid cells o
and d, and o and d each have at least one treated observation.53

For non-BRT events, PostiNodt, i = 1, 2, is a time-varying dummy for the new direct
connection between grid cells o and d having been switched on in the past 10 months. We
restrict to origin grids o that are never BRT, o and d are connected either directly or by
transfer, and o and d each have at least one treated observation. (In the latter case, the first
leg is necessarily non-BRT, while the second leg can be BRT or non-BRT.)

In Event 3, grid-cell pairs o and d that are already directly connected get more busses
from a new route because it overlaps with the existing route for the portion between o and
d. Specifically, Post3odt is a dummy for the first event of an additional direct route launched
between o and d taking place, in the ten months before week t.

A positive coefficient α3N captures the degree to which ridership or all trips between o

and d increases after more busses are added to the route between o and d due to an additional
direct route.54 The sample is all odt such that BRT grid cells o and d are directly connected
at time t, o and d each have at least one treated observation, and o and d are only connected
by direct connections before the event.55

For non-BRT events, Post3Nodt is defined analogously. The sample is all odt that are
connected directly at time t, o is never a BRT grid cell, o and d each have at least one
treated observation, and o and d are only connected by direct routes before the event.

52We impose that the origin and destination grids have BRT stations, while the new route may be a
non-BRT route traveling between these locations. It is often the case that non-BRT route travel along BRT
corridors and stop at BRT stations for a portion of the route.

53This sample includes o, d pairs that are treated at some point, as well as o, d pairs that are never treated,
yet there exist o′, d′ such that o, d′ and o′, d are treated.

54As for event types 1 and 2, the route itself can be non-BRT as long as it passes through BRT grid cells
o and d.

55We make this last restriction to focus on the case where the change in the choice set is very simple.
Results where we include o, d pairs that have both direct and transfer connections before the event are
similar.
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A.5 Attention Probabilities

We incorporate partial inattention by assuming that the agent notices each arrival from
option k with independent probability pk. In other words, with probability 1− pk the agent
fails to notice the first arrival for option k. This leads to an “effective” arrival rate for option
k of λ̃k = ϕ(pk)λk with 0 ≤ ϕ(p) ≤ 1. ϕ(p) is given by −p log(p)

1−p
, which is increasing and

concave in p, ϕ(0) = 0, and ϕ(1) = 1. To see this, note that the effective arrival rate is a
weighted sum of the first arrival rates, the second arrival, etc. Dropping the k subscript, we
can write:

λ̃ = pλ+ (1− p)p
λ

2
+ (1− p)2p

λ

3
+ ...

= pλ(
∞∑
k=0

k−1(1− p)k)

= −p log(p)
1− p

λ.

The expression on the second line is the Mercator series for p− 1.

A.6 Demand Model Derivations

Proof of Proposition 2. Here we derive expressions for the probability πk to choose option
k, and for expected utility Emaxk uk. We also derive expressions for expected travel time
and expected wait time.

In general, assume that we have independent random variables X1, X2, . . . , XN , then

Pr(k ∈ argmax
j
Xj) =

∫ ∞

−∞
fk(x)

∏
i ̸=k

Fi(x)dx, (9)

where f denotes a pdf function, and F denotes a cdf function. Expected utility is

Emax
k
Xk =

∫ ∞

−∞
x
∑
k

fk(x)
∏
i ̸=k

Fi(x)dx. (10)

In our model, have uk = vk−αwaitwk where wk is exponentially distributed with parameter
λk. Assume that αwait = 1, if necessary replacing all λk by λk/αwait. The pdf and cdf for
exponential variables are given by

• Fk(u) = exp(λk(u− vk)) for u ≤ vk and 1 above, and
• fk(u) = λk exp(λk(u− vk)) for u ≤ vk and 0 above.
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Choice Probabilities. Assume that options are ranked such that v1 < v2 < · · · < vN .
Replacing the pdf and cdf in (9) and separating the integral by intervals delimited by the
vk’s, the probability that option k is optimal is:

πk = Pr(k ∈ argmax) =

∫ ∞

−∞
fk(u)

∏
i ̸=k

Fi(u)du

= λk

∫ v1

−∞
eλk(u−vk) ×

∏
i≥1,i ̸=k

eλi(u−vi)du

+ λk

∫ v2

v1

eλk(u−vk) ×
∏

i≥2,i ̸=k

eλi(u−vi)du

. . .

+ λk

∫ vk

vk−1

eλk(u−vk) ×
∏
i>k

eλi(u−vi)du.

(For any u > vk, the probability that k is optimal is zero.)
We use the notation: Λi =

∑
ℓ≥i λℓ and Mi =

∑
ℓ≥i λℓvℓ. We have

λ−1
k πk = e−M1

∫ v1

−∞
euΛ1du+ · · ·+ e−Mk

∫ vk

vk−1

euΛkdu

=
k∑

i=1

e−Mi

∫ vi

vi−1

euΛidu

=
k∑

i=1

e−Mi
eviΛi − evi−1Λi

Λi

,

were we use the convention v0 = −∞.

Expected Utility. Plugging the exponential pdf and cdf formulae in (10) we get

Emax
k
uk =

N∑
i=1

∫ vi

vi−1

u
∑
k≥i

fk(u)
∏

j≥i,j ̸=k

Fj(u)du

=
N∑
i=1

∫ vi

vi−1

u
∑
k≥i

λk exp

(∑
j≥i

λj(u− vj)

)
du.
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The exp(·) term can be factored out of the sum as it does not depend on k, so we get

Emax
k
uk =

N∑
i=1

∫ vi

vi−1

uΛie
uΛi−Midu

=
N∑
i=1

Λ−1
i e−Mi

∫ vi

vi−1

uΛie
uΛid(uΛi)

=
N∑
i=1

Λ−1
i e−Mi

[
eΛivi(Λivi − 1)− eΛivi−1(Λivi−1 − 1)

]
=

N∑
i=1

e−Mi

[
eΛivivi − eΛivi−1vi−1

]
︸ ︷︷ ︸

vN

−
N∑
i=1

Λ−1
i e−Mi

[
eΛivi − eΛivi−1

]
︸ ︷︷ ︸

λ−1
N πN

The first sum is telescopic and evaluates to e−MN+ΛNvNvN = vN . This concludes the proof
of part 2 in Proposition 2.

Expected Travel Time and Expected Wait Time. Travel time is non-random, so
expected travel time is given by:

ET time
k ≡ E

(
T time
k | k ∈ argmax

)
=
∑
k

πkT
time
k . (11)

By a similar argument, Evk =
∑

k πkvk. We use this result to derive expected wait time:

Euk = Evk − αwaitETwait
k

vN − πNαwait/λN =
∑
k

πkvk − αwaitETwait
k

⇒ ETwait
k = πNλ

−1
N − α−1

wait

(∑
k

πk(vN − vk)

)
.

A.7 Optimal Network Design

A.7.1 Optimization Environment: Predicted Bus Travel Times

In this section, we describe how we estimate bus travel times for every edge in the grid
cell environment, in a manner that makes these edge costs consistent with our entire GPS
data on bus travel times. The key challenge is that certain origin-destination pairs are not
connected by bus in the current network.

We proceed in two steps. First, we use data that we collected on driving times between
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every pair of grid cells, and we project bus log travel time – for those origin-destination-route
combinations available – onto log driving time for that origin-destination pair. Second, we
estimate edge-specific bus travel times that “micro-found” these predicted bus travel times.
We estimate edge times in the routing model from Allen and Arkolakis (2022), which allows
us to express the predicted bus travel time between any origin and destination as the noisy
shortest route in our grid cell environment network. We repeat this exercise separately for
BRT and non-BRT.

Step 1. Predicted bus travel time for all origin-destination pairs. We obtain driv-
ing travel times between tens of thousands of pairs of locations in Jakarta from a commercial
provider of route data derived from smartphones and other GPS-enabled devices. We ob-
tained data for the entire Jakarta region in the year 2020.56 We then spatially interpolate
this data to construct driving time T drive

od between every origin and every destination.
We then predict bus travel times between all (o, d) pairs. We start with our data on

median bus travel times T bus
odr between o and d on route r (only for o, d pairs where this data

is available). We then estimate the following linear regression

log(T bus
odr ) = α0 + α1 log(T

drive
od ) + ϵodr.

We then construct the prediction T̂ bus
od for all origin-destination pairs, separately for BRT

and non-BRT bus travel times.

Step 2. Estimate edge-level bus travel times. In our counterfactual simulations, we
need to predict bus travel time for routes following any path. The model primites are edge-
specific bus travel times, which we sum up over any possible route. We now describe how
we estimate edge-specific bus travel times using our data on predicted bus travel times for
all origin-destination pairs.

Given that we do not have specific bus routes for T̂ bus
od , we model these travel times as

noisy shortest routes over the underlying network (Allen and Arkolakis, 2022).
For every edge ij in the grid cell network – this includes horizontal, vertical and diagonal

neighboring grids – denote by Tij the bus travel time parameter in the model. We denote by p
a path between o and d, and by Tp the sum of edge-wise travel times along the path. Assume
that a bus commuter traveling from o to d can choose any finite path between o and d and
faces realized travel time T̃p = Tp + ϵp, where ϵp is an iid Gumbel-distributed idiosyncratic
shock with parameter ν. These shocks capture in a stylized way the fact that bus routes

56Through additional partial city coverage from earlier years, we confirmed that this data captures pre-
COVID traffic congestion patterns and that aggregate congestion appears flat since 2016.
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between o and d do not always follow the shortest path, with small ν corresponding to
larger deviations. The commuter selects the path with the shortest realized travel time. By
properties of multinomial logit, the expected bus travel time between o and d is

T̃od ≡ Emax
p
T̃p = −ν−1 log

(∑
p

exp(−νTp)
)

Allen and Arkolakis (2022) prove that the matrix B = (exp(−νT̃od))od is given by B =

(I − A)−1 where A = (exp(−νTij))ij is the travel time adjacency matrix, which has entries
equal to zero whenever ij is not an edge.

We next estimate Tij for all ij edges, as well as ν, using data on T̂ bus
od . We minimize the

following objective function

min
ν,(Tij)ij

∑
o,d

ψod

(
log(T̂ bus

od )− log(T̃od)
)2

using weights ψod equal to the inverse squared distance between grid cells o and d. We
estimate ν̂ = 118 for BRT and ν̂ = 116 for non-BRT, suggesting that bus routes are best
explained as nearly shortest-route paths. (After this point, we no longer use ν.) We use
the resulting T̂ij for BRT and non-BRT as bus travel time in all our counterfactual network
exercises.

Figure A.22 prints the empirical fit of this exercise.

A.7.2 Ridership Equilibrium With Bus Capacity Penalties

Here we set up the formal model where commuters incur time penalties when bus occu-
pancy exceeds bus capacity. Consider a route r and two consecutive stations s and s′ on r.
The route-edge occupancy level Bss′r is given by the expected number of passengers on a
bus on route r between s and s′

Bss′r =
1

Dr

∑
o≤s<s′≤d

Rodr, (12)

where Rodr is the daily number of commuters traveling on route r between any pair of stations
o and d, and Dr is the daily number of bus departures on route r. The sum is over all stations
o on route r that precedes s (in the direction from s to s′), and all d that come after s′.

We assume that the perceived travel time on route r and edge ss′ is given by

T p
ss′r = Tss′r · κ(Bss′r), (13)
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Figure A.22: Bus Travel Time Model Fit
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x-axis, with model-predicted expected bus travel time T̃od on the y-axis.

where Tss′r is the baseline (objective) travel time, and κ(B) is a function equal to 1 when
bus occupancy is less than bus capacity, B ≤ B, and convex and increasing for B > B. We
parameterize κ as

κ(B) = max (1, exp (0.2 · (B − 84))) . (14)

We assume there is no penalty up to B = 84 persons per bus (the average bus capacity
in TransJakarta’s fleet at the end of our study period), and the penalty increases rapidly
afterward. Perceived travel time with 90 people on the bus is already more than three times
as high as objective travel time.

We define the perceived travel time between any two stations o, d on route r as the sum
of edge-wise perceived travel times along that route, i.e. T p

odr =
∑n

k=1 T
p
sksk+1r

where s1 = o

and sn = d. As commuters get on and off, crowding on a given route fluctuates at different
points on the route. Our model assumes that commuter disutility is additive over route
segments, based on the crowding level at each point.

A ridership equilibrium is defined by a set of crowding levels (for each route r and
each pair of consecutive stations s, s′) such that optimal commuter choices lead to ridership
patterns and a set of crowding levels that is exactly the assumed one. That is, it involves a
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fixed point, whereby crowding Bss′r is determined by equation (12) based on route-specific
ridership flows Rodr, and ridership patterns Rodr are given by choice probabilities based on
equations (2), (3) and (4), where we replace travel time Todr with perceived travel time T p

odr

given by (13), which depends on Bss′r.
We compute a ridership equilibrium by iterating until we reach a fixed point. For com-

putational reasons, in our simulated annealing algorithm, we approximate the equilibrium
by a single one-step updating rule. We compute route choices and ridership assuming no
penalties, then compute occupancy levels and re-compute ridership once more. This alloca-
tion is very close to the equilibrium. For the 200 bus networks we obtain from the simulated
annealing algorithm, we compare the one-step allocation with the fixed-point equilibrium.
170 of the 200 networks are already at equilibrium because all edge-occupancy levels are be-
low B. Even when they differ, the maximum deviation is negligible, equivalent to less than
a second of wait time for every original TransJakarta passenger. The maximum ridership
difference is 0.03% of daily bus ridership.

A.7.3 Analytic Results for Optimal Allocations Model

Formula for Local Comparative Statics. Here we derive the expression for the deriva-
tive of the expected optimal property f ∗(θ) with respect to a scalar θ, defined in equation
(7).

Using the logit formula we can show that

Dθπ(N, θ) = βπ(N, θ)
(
DθW (N, θ)− EN ′DθW (N ′, θ)

)
(15)

The term in parentheses says that when θ changes, the probability of a given network N

increases if and only if the derivative of welfare W with respect to θ at N is higher than its
expectation over all possible networks. Using this expression and rearranging sums several
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times we get

Dθf
∗(θ) =

∑
N

Dθπ(N, θ)f(N, θ) + π(N, θ)Dθf(N, θ)

=
∑
N

βπ(N, θ)
(
DθW (N, θ)− EN ′DθW (N ′, θ)

)
f(N, θ) + π(N, θ)Dθf(N, θ)

=
[∑

N

βπ(N, θ)DθW (N, θ)f(N, θ)
]
− β

[
EN ′DθW (N ′, θ)

][∑
N

βπ(N, θ)f(N, θ)︸ ︷︷ ︸
f∗(θ)

]
+

+
[∑

N

π(N, θ)Dθf(N, θ)
]

=
∑
N

βπ(N, θ)DθW (N, θ)f(N, θ)− β
[∑

N ′

π(N ′, θ)DθW (N ′, θ)
]
f ∗(θ) +

∑
N

π(N, θ)Dθf(N, θ)

=
∑
N

π(N, θ)
[
βDθW (N, θ)

[
f(N, θ)− f ∗(θ)

]
+Dθf(N, θ)

]
.

A.7.4 The Simulated Annealing (SA) Algorithm Asymptotic Result

This section reports the sketch of the proof of Proposition 3. The proof uses standard
Metropolist-Hastings algorithm arguments. It mirrors a classic proof that as the number of
steps increases, the outcome of SA converges to the global optimum.

The key observation is that replacing the variable inverse temperature βk with a fixed
temperature β in the acceptance probability (8) yields the Metropolis-Hastings (MH) algo-
rithm. Because Ψ is irreducible and aperiodic, MH is an irreducible and aperiodic stationary
Markov chain. Its stationary distribution at N is proportional to exp(βW (N)) and hence is
exactly π. This follows from checking that the detailed balance condition holds for any N,N ′

such that Ψ(N ′ | N) > 0:

π(N) Pr(N ′ | N) = π(N ′) Pr(N | N ′).

Returning to the SA algorithm, as the number of steps grows, the algorithm can be
approximated by a sequence of MH algorithms with increasing inverse temperatures. In
particular, the number of steps with an inverse temperature nearly equal to β grows to
infinity, and hence the endpoint of the SA algorithm is asymptotically distributed according
to π. (These arguments can be made precise, see Nikolaev and Jacobson (2010).)
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A.7.5 The Candidate Network Proposal Function Ψ

How to produce new candidate networks is critical for the success of the SA algorithm.
Starting from a network Nk, we obtain a proposed network N ′ by applying one of the
“modifier” operations described below. We first select one of the four categories with equal
probability, then a type of modifier within the category with equal probability, and finally,
we generate a network N ′ according to the selected modifier, uniformly randomly.

Local Bus Modifiers
1. Exchange one bus between two randomly drawn bus routes.
2. Exchange a randomly drawn 10% of busses between two randomly drawn bus routes.

Global Bus Modifiers
1. Give or take away busses from a randomly selected bus route. Redistribute busses

among randomly chosen other lines to stay at the constraint of 1,500 total busses.

Local Route Modifiers
1. Draw a bus route at random at add one random new adjacent stop to one end of the

route.
2. Draw a bus route at random and take away one random stop at one end of the route.
3. Draw a bus route at random, pick two locations A and B on the route and “straighten”

the route by replacing the intermediate stops by the shortest path between A and B.
4. Draw a bus route at random and add a detour to it. Pick two stops on the bus route,

pick one new location on the map at random and let the route go between the two
stops through the new location.

Global Route Modifiers
1. Create a random new bus route. Pick two locations at random and create a bus route

on the shortest path between these locations. Assign a random number of busses to
the new route, redistributed from randomly chosen other bus routes.

2. Delete a randomly drawn route and replace it with a random new bus route: pick
two locations at random and create a bus route on the shortest path between these
locations. Assign a random number of busses to the new route, redistributed from
randomly chosen other bus routes.

3. Delete a randomly drawn existing bus route, where routes with less ridership are more
likely to be chosen. Redistribute the busses among other, randomly chosen, bus routes.

4. Delete a randomly chosen set of 10 bus routes at once. Redistribute the busses among
other, randomly chosen, bus routes.

5. Add 10 random bus lines at once. Assign a random number of busses to the new routes,
redistributed from randomly chosen other bus routes.
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Approximating Proposal Probabilities Ratio In our implementation of the simulated
annealing algorithm, we use the following approximation when using equation (8)

Ψ(Nk | N ′)

Ψ(N ′ | Nk)
= 1.

We make this approximation because computing the proposal function ratio term precisely is
computationally intensive. Ψ(N ′ | Nk) is the probability that network N ′ is proposed when
starting from network Nk. To compute this, we need to enumerate all possible modifications
starting from Nk. (Given that we stratify, we only need to do this within each category and
type of modification.)

For most modifiers described above, this ratio is likely to be close to 1. For example, this
ratio is approximately equal to 1 for the proposal function that exchanges a bus between
two randomly drawn bus routes. There are two types of exceptions. First, certain modifiers
that we use are not reversible. Second, for the modifiers that add or delete routes, the
ratio is systematically far from 1. We argue that approximating the ratio with 1 will lead
our algorithm to converge to a stationary distribution that puts more weight on expansive
networks. This would only strengthen our main results that optimal networks are more
expansive than the current TransJakarta network.

To see this more clearly, denote by R the (very large) number of possible routes in our
square grid cell environment, and by r(N) the number of routes in network N . For ease
of exposition, assume that only modifiers that add or remove one route are allowed, and
assume that N ′ is obtained from Nk by adding a randomly chosen route. Then the proposal
function ratio is given by

Ψ(Nk | N ′)

Ψ(N ′ | Nk)
=

1
r(Nk)+1

1
R−r(Nk)

=
R− r(Nk)

r(Nk) + 1
.

This is significantly larger than 1, meaning that transitions towards networks with many
routes is favored in equation (8). It easy to prove that if we use the ratio equal to 1, the
Markov chain will converge to a modified stationary distribution given by

π̃(N) ∝ π(N) ·
(

R

r(N) + 1

)−1

In other words, the modified stationary distribution puts less weight on expansive networks.
Note that this adjustment effectively compensates for the very large number of expansive
networks, which is of the same magnitude as the adjustment factor.
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